In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation

被引:0
|
作者
Yi-Fan Ding
Yi-Peng Li
Xin-Yi Liu
Guang Ran
Xiu-Yin Huang
Qing Han
Yang Chen
Jin-Chi Huang
Zhe-Hui Zhou
机构
[1] Xiamen University,College of Energy
[2] Fujian Research Center for Nuclear Engineering,undefined
来源
Tungsten | 2021年 / 3卷
关键词
Tungsten; H–He dual-beam irradiation; transmission electron microscopy observation; Loop evolution; Gas bubbles;
D O I
暂无
中图分类号
学科分类号
摘要
Dislocation loop and gas bubble evolution in tungsten were in-situ investigated under 30 keV H2+ and He+ dual-beam irradiation at 973 K and 1173 K. The average size and number density of dislocation loops and gas bubbles were obtained as a function of irradiation dose. The quantitative calculation and analysis of the migration distance of 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops at low irradiation dose indicated that the main mechanism of the formation of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops should be attributed to the high-density helium cluster inducement mechanism, instead of the 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loop reaction mechanism. H2+ and He+ dual-beam irradiation induced the formation of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops and 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops, while increasing the irradiation temperature would increase ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loop percentage. The percentage of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops was approximately 18.6% at 973 K and increased to 22.9% at 1173 K. The loop reaction between two 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops to form a large-sized 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loop was in-situ observed, which induced not only the decrease of the number of 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops but also the significant increase of their sizes. The ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops impeded the movement of dislocation line and tended to escape from it instead of being absorbed. With the increase of irradiation dose, the yield strength increment (Δσloop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}$$\end{document}) caused by the change of loop size and density increased first and then decreased slightly, while the yield strength increment (Δσbubble\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}$$\end{document}) caused by the change of bubble size and density always increased. Meanwhile, within the current irradiation dose range, Δσloop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}$$\end{document} was much larger than Δσbubble\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}$$\end{document}.
引用
收藏
页码:434 / 447
页数:13
相关论文
共 42 条
  • [31] In-situ TEM characterization and atomistic simulation of cavity generation and interaction in tungsten at 800 °C under dual W2+/He+ irradiation
    Yildirim, E.
    Mummery, P. M.
    Greaves, G.
    Race, C. P.
    Jimenez-Melero, E.
    NUCLEAR MATERIALS AND ENERGY, 2024, 39
  • [32] Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys
    Gonderman, S.
    Tripathi, J. K.
    Sinclair, G.
    Novakowski, T. J.
    Sizyuk, T.
    Hassanein, A.
    NUCLEAR FUSION, 2018, 58 (02)
  • [33] DUAL-ION BEAM IRRADIATION SYSTEM INTERFACED WITH A TRANSMISSION ELECTRON-MICROSCOPE AND THE OBSERVATION OF DEFECT EVOLUTION IN NI DURING IRRADIATION
    ISHIKAWA, N
    FURUYA, K
    ULTRAMICROSCOPY, 1994, 56 (1-3) : 211 - 215
  • [34] An in-situ transmission electron microscopy study of pyramidal slip in Ti3Al .2. Fine structure of dislocations and dislocation loops
    Legros, M
    Minonishi, Y
    Caillard, D
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1997, 76 (05): : 1013 - 1032
  • [35] Effect of dose rate on the characteristics of dislocation loops in palladium: In-situ TEM analysis during 30 keV H 2+irradiation
    Cui, Dewang
    Cao, Ziqi
    Ding, Yifan
    Li, Yipeng
    Ran, Guang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 150 : 86 - 95
  • [36] In Situ Transmission Electron Microscopy Observation of Microstructure and Phase Evolution in a SnO2 Nanowire during Lithium Intercalation
    Wang, Chong-Min
    Xu, Wu
    Liu, Jun
    Zhang, Ji-Guang
    Saraf, Lax V.
    Arey, Bruce W.
    Choi, Daiwon
    Yang, Zhen-Guo
    Xiao, Jie
    Thevuthasan, Suntharampillai
    Baer, Donald R.
    NANO LETTERS, 2011, 11 (05) : 1874 - 1880
  • [37] In-situ TEM observation of microstructure evolution in Fe9Cr1.5W0.4Si alloy during He+ irradiation and post-implantation annealing
    Chen, Yang
    Li, Yipeng
    Ran, Guang
    Li, Gang
    Liu, Xinyi
    He, Kun
    Han, Qing
    Wang, Hui
    Huang, Xiuyin
    JOURNAL OF NUCLEAR MATERIALS, 2021, 555
  • [38] Observation of H2 Evolution and Electrolyte Diffusion on MoS2 Monolayer by In Situ Liquid-Phase Transmission Electron Microscopy
    Kim, Jihoon
    Park, Anseong
    Kim, Joodeok
    Kwak, Seung Jae
    Lee, Jae Yoon
    Lee, Donghoon
    Kim, Sebin
    Choi, Back Kyu
    Kim, Sungin
    Kwag, Jimin
    Kim, Younhwa
    Jeon, Sungho
    Lee, Won Chul
    Hyeon, Taeghwan
    Lee, Chul-Ho
    Lee, Won Bo
    Park, Jungwon
    ADVANCED MATERIALS, 2022, 34 (45)
  • [39] In-situ transmission electron microscopy study of oxygen vacancy ordering and dislocation annihilation in undoped and Sm-doped CeO2 ceramics during redox processes
    Ding, Yong
    Chen, Yu
    Pradel, Ken C.
    Liu, Meilin
    Wang, Zhong Lin
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (21)
  • [40] In Situ Transmission Electron Microscopy Observation of Pulverization of Aluminum Nanowires and Evolution of the Thin Surface Al2O3 Layers during Lithiation-Delithiation Cycles
    Liu, Yang
    Hudak, Nicholas S.
    Huber, Dale L.
    Limmer, Steven J.
    Sullivan, John P.
    Huang, Jian Yu
    NANO LETTERS, 2011, 11 (10) : 4188 - 4194