In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation

被引:0
|
作者
Yi-Fan Ding
Yi-Peng Li
Xin-Yi Liu
Guang Ran
Xiu-Yin Huang
Qing Han
Yang Chen
Jin-Chi Huang
Zhe-Hui Zhou
机构
[1] Xiamen University,College of Energy
[2] Fujian Research Center for Nuclear Engineering,undefined
来源
Tungsten | 2021年 / 3卷
关键词
Tungsten; H–He dual-beam irradiation; transmission electron microscopy observation; Loop evolution; Gas bubbles;
D O I
暂无
中图分类号
学科分类号
摘要
Dislocation loop and gas bubble evolution in tungsten were in-situ investigated under 30 keV H2+ and He+ dual-beam irradiation at 973 K and 1173 K. The average size and number density of dislocation loops and gas bubbles were obtained as a function of irradiation dose. The quantitative calculation and analysis of the migration distance of 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops at low irradiation dose indicated that the main mechanism of the formation of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops should be attributed to the high-density helium cluster inducement mechanism, instead of the 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loop reaction mechanism. H2+ and He+ dual-beam irradiation induced the formation of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops and 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops, while increasing the irradiation temperature would increase ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loop percentage. The percentage of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops was approximately 18.6% at 973 K and increased to 22.9% at 1173 K. The loop reaction between two 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops to form a large-sized 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loop was in-situ observed, which induced not only the decrease of the number of 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops but also the significant increase of their sizes. The ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops impeded the movement of dislocation line and tended to escape from it instead of being absorbed. With the increase of irradiation dose, the yield strength increment (Δσloop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}$$\end{document}) caused by the change of loop size and density increased first and then decreased slightly, while the yield strength increment (Δσbubble\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}$$\end{document}) caused by the change of bubble size and density always increased. Meanwhile, within the current irradiation dose range, Δσloop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}$$\end{document} was much larger than Δσbubble\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}$$\end{document}.
引用
收藏
页码:434 / 447
页数:13
相关论文
共 42 条
  • [21] Evolution of precipitate and its effect on dislocation loops during in-situ He plus irradiation and annealing
    Huang, Jinchi
    Zhong, Qinghong
    Cao, Ziqi
    Ding, Yifan
    Zhou, Zhehui
    Ma, Yan
    Ran, Guang
    PHYTOMEDICINE, 2025, 136
  • [22] INSITU OBSERVATION OF DAMAGE EVOLUTION IN SIC CRYSTALS DURING HE+ AND H-2+ DUAL-ION BEAM IRRADIATION
    HOJOU, K
    FURUNO, S
    KUSHITA, KN
    OTSU, H
    IZUI, K
    JOURNAL OF NUCLEAR MATERIALS, 1992, 191 : 583 - 587
  • [23] In-situ TEM observation of the evolution of helium bubbles in Mo during He~+ irradiation and post-irradiation annealing
    李奕鹏
    冉广
    刘歆翌
    邱玺
    韩晴
    李文杰
    郭熠佳
    Chinese Physics B, 2021, 30 (08) : 127 - 137
  • [24] In-situ TEM observation of the evolution of dislocation loops and helium bubbles in a pre helium irradiated FeCrAl alloy during annealing
    Chen, Yang
    Li, Yipeng
    Ran, Guang
    Wu, Lu
    Ye, Chao
    Han, Qing
    Wang, Hui
    Du, Huilei
    PROGRESS IN NUCLEAR ENERGY, 2020, 129 (129)
  • [25] INSITU OBSERVATION OF STRUCTURAL-CHANGES IN ALUMINUM DURING HE+ AND H-2(+) DUAL-ION BEAM IRRADIATION
    FURUNO, S
    HOJOU, K
    IZUI, K
    KAMIGAKI, N
    ONO, K
    KINO, T
    JOURNAL OF NUCLEAR MATERIALS, 1992, 191 : 1219 - 1223
  • [26] Effect of pre-existing dislocations and precipitates on microstructure evolution in W-0.5ZrC alloy during in-situ He+ & H2+dual-beam synergistic irradiation
    Huang, Jinchi
    Zhong, Qinghong
    Chen, Zhe
    Cao, Ziqi
    Ding, Yifan
    Zhou, Zhehui
    Ma, Yan
    Ran, Guang
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 123
  • [27] The effect of stress state and He concentration on the dislocation loop evolution in Ni superalloy irradiated by Ni plus & He plus dual-beam ions: In-situ TEM observation and MD simulations
    Zhu, Zhenbo
    Qiu, Rongyang
    Chang, Litao
    Ma, Guangcai
    Deng, Huiqiu
    Huang, Hefei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 212 : 77 - 88
  • [29] In situ transmission electron microscopy observation of ZnO polar and non-polar surfaces structure evolution under electron beam irradiation
    Ding, Yong
    Pradel, Ken C.
    Wang, Zhong Lin
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (01)
  • [30] In-situ transmission electron microscopy observation of the helium bubble evolution in pre-irradiated fluorapatite during annealing
    Lin, Zhiwei
    Wu, Caiyu
    He, Huanhuan
    Jiang, Shengming
    Ren, Feng
    Cao, Liuxuan
    Huang, Zijing
    Zhang, Jian
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 16521 - 16527