In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation

被引:0
|
作者
Yi-Fan Ding
Yi-Peng Li
Xin-Yi Liu
Guang Ran
Xiu-Yin Huang
Qing Han
Yang Chen
Jin-Chi Huang
Zhe-Hui Zhou
机构
[1] Xiamen University,College of Energy
[2] Fujian Research Center for Nuclear Engineering,undefined
来源
Tungsten | 2021年 / 3卷
关键词
Tungsten; H–He dual-beam irradiation; transmission electron microscopy observation; Loop evolution; Gas bubbles;
D O I
暂无
中图分类号
学科分类号
摘要
Dislocation loop and gas bubble evolution in tungsten were in-situ investigated under 30 keV H2+ and He+ dual-beam irradiation at 973 K and 1173 K. The average size and number density of dislocation loops and gas bubbles were obtained as a function of irradiation dose. The quantitative calculation and analysis of the migration distance of 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops at low irradiation dose indicated that the main mechanism of the formation of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops should be attributed to the high-density helium cluster inducement mechanism, instead of the 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loop reaction mechanism. H2+ and He+ dual-beam irradiation induced the formation of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops and 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops, while increasing the irradiation temperature would increase ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loop percentage. The percentage of ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops was approximately 18.6% at 973 K and increased to 22.9% at 1173 K. The loop reaction between two 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops to form a large-sized 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loop was in-situ observed, which induced not only the decrease of the number of 1/2 ⟨111⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{111}\rangle$$\end{document} loops but also the significant increase of their sizes. The ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle{100}\rangle$$\end{document} loops impeded the movement of dislocation line and tended to escape from it instead of being absorbed. With the increase of irradiation dose, the yield strength increment (Δσloop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}$$\end{document}) caused by the change of loop size and density increased first and then decreased slightly, while the yield strength increment (Δσbubble\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}$$\end{document}) caused by the change of bubble size and density always increased. Meanwhile, within the current irradiation dose range, Δσloop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}$$\end{document} was much larger than Δσbubble\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}$$\end{document}.
引用
收藏
页码:434 / 447
页数:13
相关论文
共 42 条
  • [1] In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation
    Ding, Yi-Fan
    Li, Yi-Peng
    Liu, Xin-Yi
    Ran, Guang
    Huang, Xiu-Yin
    Han, Qing
    Chen, Yang
    Huang, Jin-Chi
    Zhou, Zhe-Hui
    TUNGSTEN, 2021, 3 (04) : 434 - 447
  • [2] Correction to: In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation
    Yi-Fan Ding
    Yi-Peng Li
    Xin-Yi Liu
    Guang Ran
    Xiu-Yin Huang
    Qing Han
    Yang Chen
    Jin-Chi Huang
    Zhe-Hui Zhou
    Tungsten, 2022, 4 : 377 - 377
  • [3] Correction to: In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation
    Ding, Yi-Fan
    Li, Yi-Peng
    Liu, Xin-Yi
    Ran, Guang
    Huang, Xiu-Yin
    Han, Qing
    Chen, Yang
    Huang, Jin-Chi
    Zhou, Zhe-Hui
    TUNGSTEN, 2022, 4 (04) : 377 - 377
  • [4] In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2~+ and He~+ dual-beam irradiation
    Yi-Fan Ding
    Yi-Peng Li
    Xin-Yi Liu
    Guang Ran
    Xiu-Yin Huang
    Qing Han
    Yang Chen
    Jin-Chi Huang
    Zhe-Hui Zhou
    Tungsten, 2021, 3 (04) : 434 - 447
  • [6] In-situ TEM investigation of unfaulting behavior of Frank loops in FCC Pd during H2+ & He+ dual-beam irradiation
    Li, Yipeng
    Ran, Guang
    Han, Qing
    Xin, Yong
    Liu, Xinyi
    Ye, Xiaoqiu
    SCRIPTA MATERIALIA, 2021, 203
  • [7] In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He+ irradiation
    Han, Qing
    Li, Yipeng
    Ran, Guang
    Liu, Xinyi
    Wu, Lu
    Chen, Yang
    Chen, Piheng
    Ye, Xiaoqiu
    Ding, Yifan
    Wu, Xiaoyong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 87 (108-119): : 108 - 119
  • [8] The evolution and interaction of irradiation defects in CeO2 during H2+ & He+ dual-beam synergistic irradiation investigated by in-situ TEM
    Li, Yipeng
    Ran, Guang
    Wu, Lu
    Huang, Xiuyin
    Mo, Huajun
    Cao, Ziqi
    Wu, Xiaoyong
    Wang, Zhen
    JOURNAL OF NUCLEAR MATERIALS, 2022, 570
  • [9] In-situ TEM observation and MD simulation of the reaction and transformation of <100> loops in tungsten during H 2+ & He+ dual-beam irradiation
    Ding, Yifan
    Guo, Long
    Li, Yipeng
    Liu, Xinyi
    Ran, Guang
    Wu, Lu
    Qiu, Xi
    Deng, Huiqiu
    Wu, Xiaoyong
    Li, Yuanming
    Huang, Xiuyin
    SCRIPTA MATERIALIA, 2021, 204
  • [10] In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He~+ irradiation
    Qing Han
    Yipeng Li
    Guang Ran
    Xinyi Liu
    Lu Wu
    Yang Chen
    Piheng Chen
    Xiaoqiu Ye
    Yifan Ding
    Xiaoyong Wu
    Journal of Materials Science & Technology, 2021, 87 (28) : 108 - 119