Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family

被引:26
|
作者
Santos, Camila R. [1 ]
Costa, Pedro A. C. R. [1 ,2 ]
Vieira, Plinio S. [1 ]
Gonzalez, Sinkler E. T. [3 ]
Correa, Thamy L. R. [1 ]
Lima, Evandro A. [1 ]
Mandelli, Fernanda [1 ]
Pirolla, Renan A. S. [1 ]
Domingues, Mariane N. [1 ]
Cabral, Lucelia [1 ]
Martins, Marcele P. [1 ]
Cordeiro, Rosa L. [1 ]
Junior, Atilio T. [1 ]
Souza, Beatriz P. [1 ]
Prates, Erica T. [3 ,4 ]
Gozzo, Fabio C. [3 ]
Persinoti, Gabriela F. [1 ]
Skaf, Munir S. [3 ]
Murakami, Mario T. [1 ]
机构
[1] Brazilian Ctr Res Energy & Mat, Brazilian Biorenewables Natl Lab, Campinas, SP, Brazil
[2] Univ Estadual Campinas, Inst Biol, Grad Program Funct & Mol Biol, Campinas, SP, Brazil
[3] Univ Estadual Campinas, Inst Chem, Campinas, SP, Brazil
[4] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA
基金
美国国家卫生研究院;
关键词
CARBOHYDRATE-BINDING MODULE; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; LAMINARIN; SOFTWARE; PROTEIN; ENDO-BETA-1,3-GLUCANASE; RECOGNITION; PREDICTION; MECHANISM;
D O I
10.1038/s41589-020-0554-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Comprehensive informatic, structural and biochemical characterization of the GH128 family defines subgroups of glycoside hydrolase enzymes with unique recognition and cleavage mechanisms for 1,3-beta-glucan polysaccharide substrates. The fundamental and assorted roles of beta-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on beta-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (alpha/beta)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical beta-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of beta-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of beta-1,3-glucans, which can be exploited for biotechnological applications.
引用
收藏
页码:920 / +
页数:17
相关论文
共 50 条
  • [41] BETA-1,3-GLUCAN HYDROLASE FROM NICOTIANA-GLUTINOSA .1. EXTRACTION, PURIFICATION AND PHYSICAL PROPERTIES
    MOORE, AE
    STONE, BA
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1972, 258 (01) : 238 - &
  • [42] Ibrexafungerp: An orally active β-1,3-glucan synthesis inhibitor
    Apgar, James M.
    Wilkening, Robert R.
    Parker, Dann L., Jr.
    Meng, Dongfang
    Wildonger, Kenneth J.
    Sperbeck, Donald
    Greenlee, Mark L.
    Balkovec, James M.
    Flattery, Amy M.
    Abruzzo, George K.
    Galgoci, Andrew M.
    Giacobbe, Robert A.
    Gill, Charles J.
    Hsu, Ming-Jo
    Liberator, Paul
    Misura, Andrew S.
    Motyl, Mary
    Kahn, Jennifer Nielsen
    Powles, Maryann
    Racine, Fred
    Dragovic, Jasminka
    Fan, Weiming
    Kirwan, Robin
    Lee, Shu
    Liu, Hao
    Mamai, Ahmed
    Nelson, Kingsley
    Peel, Michael
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2021, 32
  • [43] A pattern-recognition protein for β-1,3-glucan -: The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori
    Ochiai, M
    Ashida, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) : 4995 - 5002
  • [44] BETA-1,3-GLUCAN HYDROLASES FROM EUGLENA GRACILIS .2. PURIFICATION AND PROPERTIES OF BETA-I,3-GLUCAN EXO-HYDROLASE
    BARRAS, DR
    STONE, BA
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 191 (02) : 342 - &
  • [45] Structural and biochemical insights into the substrate-binding mechanism of a glycoside hydrolase family 12 β-1,3-1,4-glucanase from Chaetomium sp.
    Ma, Junwen
    Li, Yanxiao
    Han, Susu
    Jiang, Zhengqiang
    Yan, Qiaojuan
    Yang, Shaoqing
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (03)
  • [46] The recognition mechanism of triple-helical β-1,3-glucan by a β-1,3-glucanase
    Qin, Zhen
    Yang, Dong
    You, Xin
    Liu, Yu
    Hu, Songqing
    Yan, Qiaojuan
    Yang, Shaoqing
    Jiang, Zhengqiang
    [J]. CHEMICAL COMMUNICATIONS, 2017, 53 (67) : 9368 - 9371
  • [47] In Vitro Enzymatic Polymerization of α-1,6-Graft-α-1,3-glucan and Structural Analysis of Gel Formation
    Togo, Azusa
    Usagawa, Mayumi
    Kimura, Satoshi
    Iwata, Tadahisa
    [J]. BIOMACROMOLECULES, 2021, 22 (11) : 4701 - 4708
  • [48] Functional Characterization and Structural Basis of the β-1,3-Glucan Synthase CMGLS from Mushroom Cordyceps militaris
    Fu, Xin
    Zan, Xin-Yi
    Sun, Lei
    Tan, Ming
    Cui, Feng-Jie
    Liang, Ying-Ying
    Meng, Li-Juan
    Sun, Wen-Jing
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (28) : 8725 - 8737
  • [49] The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase
    Abbott, D. Wade
    Boraston, Alisdair B.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2007, 368 (05) : 1215 - 1222
  • [50] Meltable fatty acid esters of α-1,3-glucan as potential thermoplastics
    Geitel, Katja
    Koschella, Andreas
    Lenges, Christian
    Heinze, Thomas
    [J]. Advanced Industrial and Engineering Polymer Research, 2020, 3 (03): : 111 - 119