Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family

被引:25
|
作者
Santos, Camila R. [1 ]
Costa, Pedro A. C. R. [1 ,2 ]
Vieira, Plinio S. [1 ]
Gonzalez, Sinkler E. T. [3 ]
Correa, Thamy L. R. [1 ]
Lima, Evandro A. [1 ]
Mandelli, Fernanda [1 ]
Pirolla, Renan A. S. [1 ]
Domingues, Mariane N. [1 ]
Cabral, Lucelia [1 ]
Martins, Marcele P. [1 ]
Cordeiro, Rosa L. [1 ]
Junior, Atilio T. [1 ]
Souza, Beatriz P. [1 ]
Prates, Erica T. [3 ,4 ]
Gozzo, Fabio C. [3 ]
Persinoti, Gabriela F. [1 ]
Skaf, Munir S. [3 ]
Murakami, Mario T. [1 ]
机构
[1] Brazilian Ctr Res Energy & Mat, Brazilian Biorenewables Natl Lab, Campinas, SP, Brazil
[2] Univ Estadual Campinas, Inst Biol, Grad Program Funct & Mol Biol, Campinas, SP, Brazil
[3] Univ Estadual Campinas, Inst Chem, Campinas, SP, Brazil
[4] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA
基金
美国国家卫生研究院;
关键词
CARBOHYDRATE-BINDING MODULE; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; LAMINARIN; SOFTWARE; PROTEIN; ENDO-BETA-1,3-GLUCANASE; RECOGNITION; PREDICTION; MECHANISM;
D O I
10.1038/s41589-020-0554-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Comprehensive informatic, structural and biochemical characterization of the GH128 family defines subgroups of glycoside hydrolase enzymes with unique recognition and cleavage mechanisms for 1,3-beta-glucan polysaccharide substrates. The fundamental and assorted roles of beta-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on beta-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (alpha/beta)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical beta-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of beta-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of beta-1,3-glucans, which can be exploited for biotechnological applications.
引用
收藏
页码:920 / +
页数:17
相关论文
共 50 条
  • [21] An Initial Event in the Insect Innate Immune Response: Structural and Biological Studies of Interactions between β-1,3-Glucan and the N-Terminal Domain of β-1,3-Glucan Recognition Protein
    Dai, Huaien
    Hiromasa, Yasuaki
    Takahashi, Daisuke
    VanderVelde, David
    Fabrick, Jeffrey A.
    Kanost, Michael R.
    Krishnamoorthi, Ramaswamy
    [J]. BIOCHEMISTRY, 2013, 52 (01) : 161 - 170
  • [22] The use of calcium ions instead of heat treatment for β-1,3-glucan gelation improves biocompatibility of the β-1,3-glucan/HA bone scaffold
    Klimek, Katarzyna
    Przekora, Agata
    Benko, Aleksandra
    Niemiec, Wiktor
    Blazewicz, Marta
    Ginalska, Grazyna
    [J]. CARBOHYDRATE POLYMERS, 2017, 164 : 170 - 178
  • [23] Structural insights into substrate recognition and catalysis by glycoside hydrolase family 87 α-1,3-glucanase from Paenibacillus glycanilyticus FH11
    Itoh, Takafumi
    Intuy, Rattanaporn
    Suyotha, Wasana
    Hayashi, Junji
    Yano, Shigekazu
    Makabe, Koki
    Wakayama, Mamoru
    Hibi, Takao
    [J]. FEBS JOURNAL, 2020, 287 (12) : 2524 - 2543
  • [24] Biology of callose (β-1,3-glucan) turnover at plasmodesmata
    Zavaliev, Raul
    Ueki, Shoko
    Epel, Bernard L.
    Citovsky, Vitaly
    [J]. PROTOPLASMA, 2011, 248 (01) : 117 - 130
  • [25] Biology of callose (β-1,3-glucan) turnover at plasmodesmata
    Raul Zavaliev
    Shoko Ueki
    Bernard L. Epel
    Vitaly Citovsky
    [J]. Protoplasma, 2011, 248 : 117 - 130
  • [26] Functional Analysis of the α-1,3-Glucan Synthase Genes agsA and agsB in Aspergillus nidulans: AgsB Is the Major α-1,3-Glucan Synthase in This Fungus
    Yoshimi, Akira
    Sano, Motoaki
    Inaba, Azusa
    Kokubun, Yuko
    Fujioka, Tomonori
    Mizutani, Osamu
    Hagiwara, Daisuke
    Fujikawa, Takashi
    Nishimura, Marie
    Yano, Shigekazu
    Kasahara, Shin
    Shimizu, Kiminori
    Yamaguchi, Masashi
    Kawakami, Kazuyoshi
    Abe, Keietsu
    [J]. PLOS ONE, 2013, 8 (01):
  • [27] Structural Insights into the Carbohydrate Binding Ability of an α-(1 → 2) Branching Sucrase from Glycoside Hydrolase Family 70
    Brison, Yoann
    Malbert, Yannick
    Czaplicki, Georges
    Mourey, Lionel
    Remaud-Simeon, Magali
    Tranier, Samuel
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (14) : 7527 - 7540
  • [28] Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium
    Rie Kawai
    Kiyohiko Igarashi
    Makoto Yoshida
    Motomitsu Kitaoka
    Masahiro Samejima
    [J]. Applied Microbiology and Biotechnology, 2006, 71 : 898 - 906
  • [29] Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium
    Kawai, Rie
    Igarashi, Kiyohiko
    Yoshida, Makoto
    Kitaoka, Motomitsu
    Samejima, Masahiro
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 71 (06) : 898 - 906
  • [30] The structure of a glycoside hydrolase family 81 endo-β-1,3-glucanase
    Zhou, Peng
    Chen, Zhongzhou
    Yan, Qiaojuan
    Yang, Shaoqing
    Hilgenfeld, Rolf
    Jiang, Zhengqiang
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2013, 69 : 2027 - 2038