On the Decoding of Cyclic Codes Using Gröbner Bases

被引:0
|
作者
Philippe Loustaunau
Eric V. York
机构
[1] Department of Mathematical Sciences,
[2] George Mason University,undefined
[3] Fair fax,undefined
[4] VA 22030,undefined
[5] USA (e-mail: ploust@gmu.edu),undefined
[6] Department of Mathematics,undefined
[7] University of Notre Dame,undefined
[8] IN 46556-5683,undefined
[9] USA (e-mail: eyork@nd.edu),undefined
关键词
Keywords: Decoding; Cyclic codes; Gröbner basis; Zero-dimensional ideals.;
D O I
暂无
中图分类号
学科分类号
摘要
 In this paper we revisit an algorithm presented by Chen, Reed, Helleseth, and Troung in [5] for decoding cyclic codes up to their true minimum distance using Gröbner basis techniques. We give a geometric characterization of the number of errors, and we analyze the corresponding algebraic characterization. We give a characterization for the error locator polynomial as well. We make these ideas effective using the theory of Gröbner bases. We then present an algorithm for computing the reduced Gröbner basis over ?2 for the syndrome ideal of cyclic codes, with respect to a lexicographic term ordering. This algorithm does not use Buchberger’s algorithm or the multivariable polynomial division algorithm, but instead uses the form of the generators of the syndrome ideal and an adaptation of the algorithm introduced in [11]. As an application of this algorithm, we present the reduced Gröbner basis for the syndrome ideal of the [23, 12, 7] Golay code, and a decoding algorithm.
引用
收藏
页码:469 / 483
页数:14
相关论文
共 50 条
  • [41] On computing Gröbner bases in rings of differential operators
    XiaoDong Ma
    Yao Sun
    DingKang Wang
    Science China Mathematics, 2011, 54 : 1077 - 1087
  • [42] Gröbner–Shirshov Bases: From their Incipiency to the Present
    L. A. Bokut'
    P. S. Kolesnikov
    Journal of Mathematical Sciences, 2003, 116 (1) : 2894 - 2916
  • [43] Gröbner–Shirshov bases for some Lie algebras
    Yu. Chen
    Y. Li
    Q. Tang
    Siberian Mathematical Journal, 2017, 58 : 176 - 182
  • [44] Gröbner Bases for Problem Solving in Multidimensional Systems
    C. Charoenlarpnopparut
    N.K. Bose
    Multidimensional Systems and Signal Processing, 2001, 12 : 365 - 376
  • [45] Characteristic Modules of Dual Extensions and Grbner Bases
    Yun Ge XU
    Long Cai LI
    Acta Mathematica Sinica(English Series), 2004, 20 (06) : 1119 - 1130
  • [46] Sagbi-Gr?bner Bases Under Composition
    KANWAL Nazish
    KHAN Junaid Alam
    JournalofSystemsScience&Complexity, 2023, 36 (05) : 2214 - 2224
  • [47] Parallel modular computation of Gröbner and involutive bases
    D. A. Yanovich
    Programming and Computer Software, 2013, 39 : 110 - 113
  • [48] SOME STUDIES ON GRBNER BASES FOR MODULES AND APPLICATIONS
    WANG MingshengState Key Lab of Information Security Institute of Software Chinese Academy of SciencesBeijing ChinaLIU ZhuojunInstitute of Systems Science Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
    JournalofSystemsScienceandComplexity, 2002, (04) : 396 - 406
  • [49] Gröbner bases and factorisation in discrete probability and Bayes
    G. Pistone
    E. Riccomagno
    Henry P. Wynn
    Statistics and Computing, 2001, 11 : 37 - 46
  • [50] Characteristic Modules of Dual Extensions and Gröbner Bases
    Yun Ge Xu
    Long Cai Li
    Acta Mathematica Sinica, English Series, 2004, 20 : 1119 - 1130