On the Decoding of Cyclic Codes Using Gröbner Bases

被引:0
|
作者
Philippe Loustaunau
Eric V. York
机构
[1] Department of Mathematical Sciences,
[2] George Mason University,undefined
[3] Fair fax,undefined
[4] VA 22030,undefined
[5] USA (e-mail: ploust@gmu.edu),undefined
[6] Department of Mathematics,undefined
[7] University of Notre Dame,undefined
[8] IN 46556-5683,undefined
[9] USA (e-mail: eyork@nd.edu),undefined
关键词
Keywords: Decoding; Cyclic codes; Gröbner basis; Zero-dimensional ideals.;
D O I
暂无
中图分类号
学科分类号
摘要
 In this paper we revisit an algorithm presented by Chen, Reed, Helleseth, and Troung in [5] for decoding cyclic codes up to their true minimum distance using Gröbner basis techniques. We give a geometric characterization of the number of errors, and we analyze the corresponding algebraic characterization. We give a characterization for the error locator polynomial as well. We make these ideas effective using the theory of Gröbner bases. We then present an algorithm for computing the reduced Gröbner basis over ?2 for the syndrome ideal of cyclic codes, with respect to a lexicographic term ordering. This algorithm does not use Buchberger’s algorithm or the multivariable polynomial division algorithm, but instead uses the form of the generators of the syndrome ideal and an adaptation of the algorithm introduced in [11]. As an application of this algorithm, we present the reduced Gröbner basis for the syndrome ideal of the [23, 12, 7] Golay code, and a decoding algorithm.
引用
收藏
页码:469 / 483
页数:14
相关论文
共 50 条
  • [21] Asymmetric approach to computation of Gröbner bases
    Pankratiev E.V.
    Semenov A.S.
    Journal of Mathematical Sciences, 2008, 149 (3) : 1235 - 1245
  • [22] Truncated Gröbner Bases for Integer Programming
    R. R. Thomas
    R. Weismantel
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 241 - 256
  • [23] On the Relation Between Gröbner and Pommaret Bases
    Daniel Mall
    Applicable Algebra in Engineering, Communication and Computing, 1998, 9 : 117 - 123
  • [24] Slimgb: Gröbner bases with slim polynomials
    Michael Brickenstein
    Revista Matemática Complutense, 2010, 23 : 453 - 466
  • [25] The λ-Gröbner Bases Under Polynomial Composition
    Jinwang Liu
    Dongmei Li
    Xiaosong Chen
    Journal of Systems Science and Complexity, 2007, 20 : 610 - 613
  • [26] On noncommutative Gröbner bases over rings
    Golod E.S.
    Journal of Mathematical Sciences, 2007, 140 (2) : 239 - 242
  • [27] Modular Techniques for Noncommutative Gröbner Bases
    Wolfram Decker
    Christian Eder
    Viktor Levandovskyy
    Sharwan K. Tiwari
    Mathematics in Computer Science, 2020, 14 : 19 - 33
  • [28] Gröbner bases for bipartite determinantal ideals
    Illian, Josua
    Li, Li
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 124 - 147
  • [29] Gröbner bases for complete uniform families
    Hegedűs, Gábor
    Rónyai, Lajos
    Journal of Algebraic Combinatorics, 2003, 17 (02): : 171 - 180
  • [30] Gröbner Bases for Complete Uniform Families
    Gábor Hegedűs
    Lajos Rónyai
    Journal of Algebraic Combinatorics, 2003, 17 : 171 - 180