On the Decoding of Cyclic Codes Using Gröbner Bases

被引:0
|
作者
Philippe Loustaunau
Eric V. York
机构
[1] Department of Mathematical Sciences,
[2] George Mason University,undefined
[3] Fair fax,undefined
[4] VA 22030,undefined
[5] USA (e-mail: ploust@gmu.edu),undefined
[6] Department of Mathematics,undefined
[7] University of Notre Dame,undefined
[8] IN 46556-5683,undefined
[9] USA (e-mail: eyork@nd.edu),undefined
关键词
Keywords: Decoding; Cyclic codes; Gröbner basis; Zero-dimensional ideals.;
D O I
暂无
中图分类号
学科分类号
摘要
 In this paper we revisit an algorithm presented by Chen, Reed, Helleseth, and Troung in [5] for decoding cyclic codes up to their true minimum distance using Gröbner basis techniques. We give a geometric characterization of the number of errors, and we analyze the corresponding algebraic characterization. We give a characterization for the error locator polynomial as well. We make these ideas effective using the theory of Gröbner bases. We then present an algorithm for computing the reduced Gröbner basis over ?2 for the syndrome ideal of cyclic codes, with respect to a lexicographic term ordering. This algorithm does not use Buchberger’s algorithm or the multivariable polynomial division algorithm, but instead uses the form of the generators of the syndrome ideal and an adaptation of the algorithm introduced in [11]. As an application of this algorithm, we present the reduced Gröbner basis for the syndrome ideal of the [23, 12, 7] Golay code, and a decoding algorithm.
引用
收藏
页码:469 / 483
页数:14
相关论文
共 50 条
  • [1] Decoding Affine Variety Codes Using Gröbner Bases
    Fitzgerald J.
    Lax R.F.
    Designs, Codes and Cryptography, 1998, 13 (2) : 147 - 158
  • [2] Maximum likelihood decoding for linear block codes using Gröbner bases
    Ikegami, Daisuke
    Kaji, Yuichi
    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003, E86-A (03) : 643 - 651
  • [3] Gröbner bases and combinatorics for binary codes
    M. Borges-Quintana
    M. A. Borges-Trenard
    P. Fitzpatrick
    E. Martínez-Moro
    Applicable Algebra in Engineering, Communication and Computing, 2008, 19 : 393 - 411
  • [4] Gröbner bases theory for modules and its application in decoding error-correct codes
    Li, Yao-Hui
    Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition), 2009, 41 (01): : 153 - 157
  • [5] On the decoding of cyclic codes using Grobner bases
    Loustaunau, P
    York, EV
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (06) : 469 - 483
  • [6] On the decoding of cyclic codes using Grobner bases
    Appl Algebra Eng Commun Comput, 6 (469-483):
  • [7] Gröbner basis approach to list decoding of algebraic geometry codes
    Henry O’Keeffe
    Patrick Fitzpatrick
    Applicable Algebra in Engineering, Communication and Computing, 2007, 18 : 445 - 466
  • [8] A note on Gröbner bases
    Carvalho P.
    Journal of Mathematical Sciences, 2009, 161 (6) : 832 - 838
  • [9] Feynman integral reduction using Gröbner bases
    Mohamed Barakat
    Robin Brüser
    Claus Fieker
    Tobias Huber
    Jan Piclum
    Journal of High Energy Physics, 2023
  • [10] Gr δbner Bases with Reduction Machines
    Surlea, Georgiana
    Craciun, Adrian
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2019, (303): : 61 - 75