Rigidity of spheres in Riemannian manifolds and a non-embedding theorem

被引:0
|
作者
Alireza Ranjbar-Motlagh
机构
[1] Universidade Federal de Minas Gerais,Departmento de Matemática
关键词
isometric immersion; rigidity; embedding; pinching; maximum principle; -mean curvature; Primary 53C24; 53C42; Secondary 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
Letf:M →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar M$$ \end{document} be an isometric immersion between Riemannian manifolds. The purpose of this paper is to find the minimum possible conditions onM and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar M$$ \end{document} (in the terms of curvatures and external diameter) in order to the image off be contained in a sphere. Our results generalize the other authors work in three major steps, domain, range and the codimension of immersions. As a byproduct, we obtain the non-embedding theorems Chern-Kuiper, Moore and Jacobowitz. The proofs are based on the maximum (comparison) principle.
引用
收藏
页码:159 / 171
页数:12
相关论文
共 50 条
  • [1] Rigidity of spheres in Riemannian manifolds and a non-embedding theorem
    Ranjbar-Motlagh, A
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2001, 32 (02): : 159 - 171
  • [2] Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds
    Huang, Yonghong
    Sun, Shanzhong
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 91 - 114
  • [3] Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds
    Yonghong Huang
    Shanzhong Sun
    Frontiers of Mathematics in China, 2020, 15 : 91 - 114
  • [5] SOME ISOMETRIC EMBEDDING AND RIGIDITY RESULTS FOR RIEMANNIAN-MANIFOLDS
    BERGER, E
    BRYANT, R
    GRIFFITHS, P
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (08): : 4657 - 4660
  • [6] Conformal Rigidity and Non-rigidity of the Scalar Curvature on Riemannian Manifolds
    Byeon, Jaeyoung
    Jin, Sangdon
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 9745 - 9767
  • [7] Conformal Rigidity and Non-rigidity of the Scalar Curvature on Riemannian Manifolds
    Jaeyoung Byeon
    Sangdon Jin
    The Journal of Geometric Analysis, 2021, 31 : 9745 - 9767
  • [8] Reshetnyak Rigidity for Riemannian Manifolds
    Kupferman, Raz
    Maor, Cy
    Shachar, Asaf
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (01) : 367 - 408
  • [9] Reshetnyak Rigidity for Riemannian Manifolds
    Raz Kupferman
    Cy Maor
    Asaf Shachar
    Archive for Rational Mechanics and Analysis, 2019, 231 : 367 - 408
  • [10] SOME RESULTS CONCERNING THE NON-EMBEDDING CODIMENSION OF GRASSMANN MANIFOLDS IN EUCLIDEAN SPACES
    OPROIU, V
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (02): : 275 - 286