Conformal Rigidity and Non-rigidity of the Scalar Curvature on Riemannian Manifolds

被引:0
|
作者
Jaeyoung Byeon
Sangdon Jin
机构
[1] KAIST,Department of Mathematical Sciences
[2] KAIST,Stochastic Analysis and Application Research Center
来源
关键词
Conformal; Rigidity; Non-rigidity scalar curvature; Linearized operator; Riemannian manifold; 53C24; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
For a compact smooth manifold (M,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g_0)$$\end{document} with a boundary, we study the conformal rigidity and non-rigidity of the scalar curvature in the conformal class. It is known that the sign of the first eigenvalue for a linearized operator of the scalar curvature by a conformal change determines the rigidity/non-rigidity of the scalar curvature by conformal changes when the scalar curvature Rg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{g_0}$$\end{document} is positive. In this paper, we show the sign condition of Rg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{g_0}$$\end{document} is not necessary, and a reversed rigidity of the scalar curvature in the conformal class does not hold if there exists a point x0∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in M$$\end{document} with Rg0(x0)>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{g_0}(x_0) > 0.$$\end{document}
引用
收藏
页码:9745 / 9767
页数:22
相关论文
共 50 条
  • [1] Conformal Rigidity and Non-rigidity of the Scalar Curvature on Riemannian Manifolds
    Byeon, Jaeyoung
    Jin, Sangdon
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 9745 - 9767
  • [2] Rigidity of Riemannian manifolds with positive scalar curvature
    Huang, Guangyue
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (02) : 257 - 272
  • [3] Rigidity of Riemannian manifolds with positive scalar curvature
    Guangyue Huang
    Annals of Global Analysis and Geometry, 2018, 54 : 257 - 272
  • [4] A note on rigidity of Riemannian manifolds with positive scalar curvature
    Guangyue Huang
    Qianyu Zeng
    Archiv der Mathematik, 2020, 115 : 457 - 465
  • [5] A note on rigidity of Riemannian manifolds with positive scalar curvature
    Huang, Guangyue
    Zeng, Qianyu
    ARCHIV DER MATHEMATIK, 2020, 115 (04) : 457 - 465
  • [6] Rigidity and non-rigidity results for conformal immersions
    Lamm, Tobias
    Schaetzle, Reiner Michael
    ADVANCES IN MATHEMATICS, 2015, 281 : 1178 - 1201
  • [7] Rigidity and Non-Rigidity of Hn/Zn-2 with Scalar Curvature Bounded from Below
    Hao, Tianze
    Hu, Yuhao
    Liu, Peng
    Shi, Yuguang
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [8] Rigidity of Einstein manifolds with positive scalar curvature
    Hong-wei Xu
    Juan-ru Gu
    Mathematische Annalen, 2014, 358 : 169 - 193
  • [9] Scalar curvature rigidity of hyperbolic product manifolds
    Listing, M
    MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (03) : 581 - 594
  • [10] Rigidity of Einstein manifolds with positive scalar curvature
    Xu, Hong-wei
    Gu, Juan-ru
    MATHEMATISCHE ANNALEN, 2014, 358 (1-2) : 169 - 193