Rigidity of spheres in Riemannian manifolds and a non-embedding theorem

被引:0
|
作者
Alireza Ranjbar-Motlagh
机构
[1] Universidade Federal de Minas Gerais,Departmento de Matemática
关键词
isometric immersion; rigidity; embedding; pinching; maximum principle; -mean curvature; Primary 53C24; 53C42; Secondary 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
Letf:M →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar M$$ \end{document} be an isometric immersion between Riemannian manifolds. The purpose of this paper is to find the minimum possible conditions onM and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar M$$ \end{document} (in the terms of curvatures and external diameter) in order to the image off be contained in a sphere. Our results generalize the other authors work in three major steps, domain, range and the codimension of immersions. As a byproduct, we obtain the non-embedding theorems Chern-Kuiper, Moore and Jacobowitz. The proofs are based on the maximum (comparison) principle.
引用
收藏
页码:159 / 171
页数:12
相关论文
共 50 条