An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation

被引:0
|
作者
Nina A. Chernyavskaya
Leonid A. Shuster
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics and Computer Science
[2] Bar-Ilan University,Department of Mathematics
来源
关键词
Sobolev space; embedding theorem; Sturm-Liouville equation; 46E35; 34B24;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the weighted space W1(2)(ℝ,q) of Sobolev type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$\end{document} and the equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$\end{document} Here f ε L1(ℝ) and 0 ⩾ q ∈ L1loc(ℝ).
引用
收藏
页码:709 / 716
页数:7
相关论文
共 50 条