An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation

被引:0
|
作者
Nina A. Chernyavskaya
Leonid A. Shuster
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics and Computer Science
[2] Bar-Ilan University,Department of Mathematics
来源
关键词
Sobolev space; embedding theorem; Sturm-Liouville equation; 46E35; 34B24;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the weighted space W1(2)(ℝ,q) of Sobolev type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$\end{document} and the equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$\end{document} Here f ε L1(ℝ) and 0 ⩾ q ∈ L1loc(ℝ).
引用
收藏
页码:709 / 716
页数:7
相关论文
共 50 条
  • [21] Methods of analysis of the condition for correct solvability in L p (a"e) of general Sturm-Liouville equations
    Chernyavskaya, Nina A.
    Shuster, Leonid A.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 1067 - 1098
  • [22] Solvability of an inverse problem for discontinuous Sturm-Liouville operators
    Zhang, Ran
    Bondarenko, Natalia Pavlovna
    Yang, Chuan Fu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 124 - 139
  • [23] Solvability of Sturm-Liouville boundary value problems with impulses
    Li Zhang
    Xiankai Huang
    Chunfeng Xing
    Boundary Value Problems, 2013
  • [24] Solvability of Sturm-Liouville boundary value problems with impulses
    Zhang, Li
    Huang, Xiankai
    Xing, Chunfeng
    BOUNDARY VALUE PROBLEMS, 2013,
  • [25] Solvability of Sturm-Liouville problems on time scales at resonance
    Zhang, Youwei
    Ma, Lei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1785 - 1797
  • [26] SOLVABILITY OF STURM-LIOUVILLE INVERSE PROBLEM ON WHOLE LINE
    LEVITAN, BM
    DOKLADY AKADEMII NAUK SSSR, 1977, 234 (01): : 22 - 25
  • [27] SCHLICHT SOLUTIONS OF THE STURM-LIOUVILLE EQUATION
    ROBERTSON, MS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (06) : 545 - 545
  • [28] SPACES ADMISSIBLE FOR THE STURM-LIOUVILLE EQUATION
    Chernyavskaya, N. A.
    Shuster, L. A.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (03) : 1023 - 1052
  • [29] A representation for solutions of the Sturm-Liouville equation
    Kravchenko, Vladislav V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (08) : 775 - 789
  • [30] AMBARZUMYAN-TYPE THEOREMS FOR THE STURM-LIOUVILLE EQUATION ON A GRAPH
    Yang, Chuan-Fu
    Huang, Zhen-You
    Yang, Xiao-Ping
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1353 - 1372