Random Matchings in Regular Graphs

被引:0
|
作者
Jeff Kahn
Jeong Han Kim
机构
[1] Department of Mathematics and RUTCOR,
[2] Rutgers University; New Brunswick,undefined
[3] NJ 08903,undefined
[4] USA; E-mail: jkahn@math.rutgers.edu,undefined
[5] AT&T Bell Laboratories; Murray Hill,undefined
[6] NJ 07974,undefined
[7] USA. Current address: Microsoft Research,undefined
[8] One Microsoft Way,undefined
[9] Redmond,undefined
[10] WA 98052,undefined
[11] USA; ,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
AMS Subject Classification (1991) Classes:  05C65, 05C70, 05C80, 60C05, 60F05, 60G42;
D O I
暂无
中图分类号
学科分类号
摘要
-regular graph G, let M be chosen uniformly at random from the set of all matchings of G, and for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} be the probability that M does not cover x.
引用
收藏
页码:201 / 226
页数:25
相关论文
共 50 条
  • [31] Matchings in Random Biregular Bipartite Graphs
    Perarnau, Guillem
    Petridis, Giorgis
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [32] Random lifts of graphs: Perfect matchings
    Linial, N
    Rozenman, E
    COMBINATORICA, 2005, 25 (04) : 407 - 424
  • [33] On induced matchings as star complements in regular graphs
    P. Rowlinson
    Journal of Mathematical Sciences, 2012, 182 (2) : 159 - 163
  • [34] ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 84 - 114
  • [35] LARGE INDUCED MATCHINGS IN RANDOM GRAPHS
    Cooley, Oliver
    Draganic, Nemanja
    Kang, Mihyun
    Sudakov, Benny
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (01) : 267 - 280
  • [36] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [37] EDGE-CONNECTIVITY, EIGENVALUES, AND MATCHINGS IN REGULAR GRAPHS
    Suil, O.
    Cioaba, Sebastian M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1470 - 1481
  • [38] Tighter approximations for maximum induced matchings in regular graphs
    Gotthilf, Z
    Lewenstein, M
    APPROXIMATION AND ONLINE ALGORITHMS, 2006, 3879 : 270 - 281
  • [39] Bounding and approximating minimum maximal matchings in regular graphs
    Baste, Julien
    Fuerst, Maximilian
    Henning, Michael A.
    Mohr, Elena
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2021, 344 (03)
  • [40] Matchings and independent sets of a fixed size in regular graphs
    Carroll, Teena
    Galvin, David
    Tetali, Prasad
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (07) : 1219 - 1227