EDGE-CONNECTIVITY, EIGENVALUES, AND MATCHINGS IN REGULAR GRAPHS

被引:34
|
作者
Suil, O. [1 ]
Cioaba, Sebastian M. [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
graph eigenvalues; matching; connectivity; minimum edge cut; SMALL CUTS; NUMBER;
D O I
10.1137/100786824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the relationship between eigenvalues and the existence of certain subgraphs in regular graphs. We give a condition on an appropriate eigenvalue that guarantees a lower bound for the matching number of a t-edge-connected d-regular graph when t <= d - 2. This work extends some classical results of von Baebler [Comment. Math. Helv., 10 (1937), pp. 275-287] and Berge [Theorie des Graphes et Ses Applications, Collection Universitaire de Mathematiques II, Dunod, Paris, 1958] and more recent work of Cioaba, Gregory, and Haemers [J. Combin. Theory Ser. B, 99 (2009), pp. 287-297]. We also study the relationships between the eigenvalues of a d-regular t-edge-connected graph G and the maximum number of pairwise disjoint connected subgraphs in G that are each joined to the rest of the graph by exactly t edges.
引用
下载
收藏
页码:1470 / 1481
页数:12
相关论文
共 50 条