Variational Principle for Non-additive Neutralized Bowen Topological Pressure
被引:0
|
作者:
Qu, Congcong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Wanli Univ, Coll Big Data & Software Engn, Ningbo 315107, Zhejiang, Peoples R ChinaZhejiang Wanli Univ, Coll Big Data & Software Engn, Ningbo 315107, Zhejiang, Peoples R China
Qu, Congcong
[1
]
Xu, Lan
论文数: 0引用数: 0
h-index: 0
机构:
Suzhou Vocat Univ, Dept Math & Phys, Suzhou 215104, Jiangsu, Peoples R ChinaZhejiang Wanli Univ, Coll Big Data & Software Engn, Ningbo 315107, Zhejiang, Peoples R China
Xu, Lan
[2
]
机构:
[1] Zhejiang Wanli Univ, Coll Big Data & Software Engn, Ningbo 315107, Zhejiang, Peoples R China
[2] Suzhou Vocat Univ, Dept Math & Phys, Suzhou 215104, Jiangsu, Peoples R China
Ovadia and Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2) defined the neutralized Bowen open ball as Bn(x,e-n epsilon)={y is an element of X:d(Tj(x),Tj(y))<e-n epsilon,for all 0 <= j <= n-1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n(x,e<^>{-n\varepsilon })=\{y\in X:d(T<^>j(x),T<^>j(y))<e<^>{-n\varepsilon },\forall 0\le j\le n-1\}.$$\end{document}Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1) introduced the notion of neutralized Bowen topological entropy of subsets by replacing the usual Bowen ball by neutralized Bowen open ball. And they established variational principles for this notion. In this note, we extend this notion to the non-additive neutralized Bowen topological pressure and establish the variational principle for non-additive potentials with tempered distortion. Besides, we establish a Billingsley type theorem for non-additive neutralized Bowen topological pressure.
机构:
Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo 2, I-84084 Fisciano, Sa, ItalyUniv Salerno, Dipartimento Matemat, Via Giovanni Paolo 2, I-84084 Fisciano, Sa, Italy
Cavaliere, Paola
De Lucia, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Salerno, Dipartimento Matemat, Via Giovanni Paolo 2, I-84084 Fisciano, Sa, Italy
De Lucia, Paolo
De Simone, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Salerno, Dipartimento Matemat, Via Giovanni Paolo 2, I-84084 Fisciano, Sa, Italy
机构:
Univ Salerno, Dipartimento Matemat, I-84084 Fisciano, Sa, ItalyUniv Salerno, Dipartimento Matemat, I-84084 Fisciano, Sa, Italy
Cavaliere, Paola
Ventriglia, Flavia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Salerno, Dipartimento Matemat, I-84084 Fisciano, Sa, Italy