Variational Principle for Non-additive Neutralized Bowen Topological Pressure

被引:0
|
作者
Qu, Congcong [1 ]
Xu, Lan [2 ]
机构
[1] Zhejiang Wanli Univ, Coll Big Data & Software Engn, Ningbo 315107, Zhejiang, Peoples R China
[2] Suzhou Vocat Univ, Dept Math & Phys, Suzhou 215104, Jiangsu, Peoples R China
关键词
Neutralized topological pressure; Neutralized Katok's pressure; Variational principle; Non-additive potential; BILLINGSLEY-TYPE THEOREM; THERMODYNAMIC FORMALISM; DIMENSION THEORY; ENTROPY; DISTORTION; SUBSETS;
D O I
10.1007/s12346-024-01032-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ovadia and Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2) defined the neutralized Bowen open ball as Bn(x,e-n epsilon)={y is an element of X:d(Tj(x),Tj(y))<e-n epsilon,for all 0 <= j <= n-1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n(x,e<^>{-n\varepsilon })=\{y\in X:d(T<^>j(x),T<^>j(y))<e<^>{-n\varepsilon },\forall 0\le j\le n-1\}.$$\end{document}Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1) introduced the notion of neutralized Bowen topological entropy of subsets by replacing the usual Bowen ball by neutralized Bowen open ball. And they established variational principles for this notion. In this note, we extend this notion to the non-additive neutralized Bowen topological pressure and establish the variational principle for non-additive potentials with tempered distortion. Besides, we establish a Billingsley type theorem for non-additive neutralized Bowen topological pressure.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] TOPOLOGICAL PRESSURE FOR DISCONTINUOUS SEMIFLOWS AND A VARIATIONAL PRINCIPLE FOR IMPULSIVE DYNAMICAL SYSTEMS
    Backes, Lucas
    Rodrigues, Fagner B.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 59 (01) : 303 - 330
  • [32] The variational principle of topological r-pressure for amenable group actions
    Wang, Qiong
    Zhang, Ruifeng
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (03): : 500 - 522
  • [33] A variational principle for weighted topological pressure under Zd-actions
    Huo, Qiang
    Yuan, Rong
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (10) : 3311 - 3340
  • [34] On Regularity for Non-additive Measure
    Watanabe, Toshikazu
    Tanaka, Tamaki
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 69 - 75
  • [35] A Non-Additive Measure of Uncertainty
    Shackle, G. L. S.
    REVIEW OF ECONOMIC STUDIES, 1949, 17 : 70 - 74
  • [36] On the polytope of non-additive measures
    Combarro, Elias F.
    Miranda, Pedro
    FUZZY SETS AND SYSTEMS, 2008, 159 (16) : 2145 - 2162
  • [37] Non-additive anonymous games
    Roman Kozhan
    International Journal of Game Theory, 2011, 40 : 215 - 230
  • [38] Trace formulas for additive and non-additive perturbations
    Malamud, Mark
    Neidhardt, Hagen
    ADVANCES IN MATHEMATICS, 2015, 274 : 736 - 832
  • [39] Non-Additive Security Games
    Wang, Sinong
    Liu, Fang
    Shroff, Ness
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 728 - 735
  • [40] Non-additive anonymous games
    Kozhan, Roman
    INTERNATIONAL JOURNAL OF GAME THEORY, 2011, 40 (02) : 215 - 230