Variational Principle for Non-additive Neutralized Bowen Topological Pressure

被引:0
|
作者
Qu, Congcong [1 ]
Xu, Lan [2 ]
机构
[1] Zhejiang Wanli Univ, Coll Big Data & Software Engn, Ningbo 315107, Zhejiang, Peoples R China
[2] Suzhou Vocat Univ, Dept Math & Phys, Suzhou 215104, Jiangsu, Peoples R China
关键词
Neutralized topological pressure; Neutralized Katok's pressure; Variational principle; Non-additive potential; BILLINGSLEY-TYPE THEOREM; THERMODYNAMIC FORMALISM; DIMENSION THEORY; ENTROPY; DISTORTION; SUBSETS;
D O I
10.1007/s12346-024-01032-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ovadia and Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2) defined the neutralized Bowen open ball as Bn(x,e-n epsilon)={y is an element of X:d(Tj(x),Tj(y))<e-n epsilon,for all 0 <= j <= n-1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n(x,e<^>{-n\varepsilon })=\{y\in X:d(T<^>j(x),T<^>j(y))<e<^>{-n\varepsilon },\forall 0\le j\le n-1\}.$$\end{document}Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1) introduced the notion of neutralized Bowen topological entropy of subsets by replacing the usual Bowen ball by neutralized Bowen open ball. And they established variational principles for this notion. In this note, we extend this notion to the non-additive neutralized Bowen topological pressure and establish the variational principle for non-additive potentials with tempered distortion. Besides, we establish a Billingsley type theorem for non-additive neutralized Bowen topological pressure.
引用
收藏
页数:17
相关论文
共 50 条