Hardy type inequalities with weights dependent on the bessel functions

被引:5
|
作者
Nasibullin R. [1 ]
机构
[1] Kazan (Volga Region) Federal University, Kremlevskaya ul. 18, Kazan, Tatarstan
关键词
Bessel functions; convex domains; distance function; Hardy inequality; inradius; Lamb constant;
D O I
10.1134/S1995080216030185
中图分类号
学科分类号
摘要
We obtain a new sharp Hardy type inequality with an additional term. Using the Bessel functions we prove one dimensional inequality and their multidimensional analogs in domains with a finite inradius. The weight functions depend on the Bessel functions and Lamb’ s constants. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:274 / 283
页数:9
相关论文
共 50 条
  • [11] TURAN TYPE INEQUALITIES FOR GENERAL BESSEL FUNCTIONS
    Baricz, Arpad
    Ponnusamy, Saminathan
    Singh, Sanjeev
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02): : 709 - 719
  • [12] TURAN TYPE INEQUALITIES FOR MODIFIED BESSEL FUNCTIONS
    Baricz, Arpad
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) : 254 - 264
  • [13] Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations
    Nguyen Tuan Duy
    Nguyen Lam
    Nguyen Anh Triet
    JOURNAL OF SPECTRAL THEORY, 2020, 10 (04) : 1277 - 1302
  • [14] Hardy inequalities with homogeneous weights
    Hoffmann-Ostenhof, Thomas
    Laptev, Ari
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (11) : 3278 - 3289
  • [15] Weighted Hardy inequalities and Hardy transforms of weights
    Cerdà, J
    Martín, J
    STUDIA MATHEMATICA, 2000, 139 (02) : 189 - 196
  • [16] DISCRETE ITERATED HARDY-TYPE INEQUALITIES WITH THREE WEIGHTS
    Oinarov, R.
    Omarbayeva, B. K.
    Temirkhanova, A. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 105 (01): : 19 - 29
  • [17] Extremals for Hardy-Sobolev type inequalities with monomial weights
    Castro, Hernan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [18] Construction of weights in modular inequalities involving operators of Hardy type
    Kerman, R
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 269 - 278
  • [19] Hardy type inequalities with exponential weights for a class of convolution operators
    Mantoiu, Marius
    Purice, Radu
    ARKIV FOR MATEMATIK, 2007, 45 (01): : 83 - 103
  • [20] Bessel pairs and optimal Hardy and Hardy–Rellich inequalities
    Nassif Ghoussoub
    Amir Moradifam
    Mathematische Annalen, 2011, 349 : 1 - 57