Ricci Tensor on RCD∗(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{RCD}^*(K, N)$$\end{document} Spaces

被引:0
|
作者
Bang-Xian Han
机构
[1] University of Bonn,Hausdorff Center for Mathematics
来源
The Journal of Geometric Analysis | 2018年 / 28卷 / 2期
关键词
Curvature-dimension condition; Bakry-Émery theory; Bochner inequality; Ricci tensor; Metric measure space; 31E05; 53C23; 51F99; 30L99;
D O I
10.1007/s12220-017-9863-7
中图分类号
学科分类号
摘要
We obtain an improved Bochner inequality based on the curvature-dimension condition RCD∗(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{RCD}^*(K, N)$$\end{document} and propose a definition of N-dimensional Ricci tensor on metric measure spaces.
引用
收藏
页码:1295 / 1314
页数:19
相关论文
共 50 条