Monotonicity and rigidity of the W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {W}}$$\end{document}-entropy on RCD(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {RCD}} (0,N)$$\end{document} spaces

被引:0
|
作者
Kazumasa Kuwada
Xiang-Dong Li
机构
[1] Tohoku University,Mathematical Institute
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Primary 53C23; 53C44; 53J35; Secondary 51f99; 58J65; 60J60;
D O I
10.1007/s00229-019-01177-y
中图分类号
学科分类号
摘要
By means of a space-time Wasserstein control, we show the monotonicity of the W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {W}}$$\end{document}-entropy functional in time along heat flows on possibly singular metric measure spaces with non-negative Ricci curvature and a finite upper bound of dimension in an appropriate sense. The associated rigidity result on the rate of dissipation of the W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {W}}$$\end{document}-entropy is also proved. These extend known results even on weighted Riemannian manifolds in some respects. In addition, we reveal that some singular spaces will exhibit the rigidity models while only the Euclidean space does in the class of smooth weighted Riemannian manifolds.
引用
收藏
页码:119 / 149
页数:30
相关论文
共 50 条