On the isometry group of RCD∗(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD^*(K,N)$$\end{document}-spaces

被引:0
|
作者
Luis Guijarro
Jaime Santos-Rodríguez
机构
[1] Universidad Autónoma de Madrid,Department of Mathematics
[2] ICMAT CSIC-UAM-UCM-UC3M,undefined
关键词
Primary 53C23; Secondary 53C21;
D O I
10.1007/s00229-018-1010-7
中图分类号
学科分类号
摘要
We prove that the group of isometries of a metric measure space that satisfies the Riemannian curvature condition, RCD∗(K,N),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD^*(K,N),$$\end{document} is a Lie group. We obtain an optimal upper bound on the dimension of this group, and classify the spaces where this maximal dimension is attained.
引用
收藏
页码:441 / 461
页数:20
相关论文
共 50 条