High-speed particle image velocimetry for the efficient measurement of turbulence statistics

被引:0
|
作者
Christian E. Willert
机构
[1] Institute for Propulsion Technology,German Aerospace Center (DLR)
来源
Experiments in Fluids | 2015年 / 56卷
关键词
Wall Shear Stress; Direct Numerical Simulation; Turbulent Boundary Layer; Laser Doppler Anemometry; Viscous Sublayer;
D O I
暂无
中图分类号
学科分类号
摘要
A high-frame-rate camera and a continuous-wave laser are used to capture long particle image sequences exceeding 100,000 consecutive frames at framing frequencies up to 20 kHz. The electronic shutter of the high-speed CMOS camera is reduced to 10μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu$$\end{document}s to prevent excessive particle image streaking. The combination of large image number and high frame rate is possible by limiting the field of view to a narrow strip, primarily to capture temporally resolved profiles of velocity and derived quantities, such as vorticity as well as higher order statistics. Multi-frame PIV processing algorithms are employed to improve the dynamic range of recovered PIV data. The recovered data are temporally well resolved and provide sufficient samples for statistical convergence of the fluctuating velocity components. The measurement technique is demonstrated on a spatially developing turbulent boundary layer inside a small wind tunnel with Reδ=4,800,Reτ=240\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_\delta = 4{,}800,\, Re_\tau = 240$$\end{document} and Reθ=515\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_\theta = 515$$\end{document}. The chosen magnification permits a reliable estimation of the mean velocity profile down to a few wall units and yields statistical information such as the Reynolds stress components and probability density functions. By means of single-line correlation, it is further possible to extract the near-wall velocity profile in the viscous sublayer, both time-averaged as well as instantaneous, which permits the estimation the wall shear rate γ˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\gamma }$$\end{document} and along with it the shear stress τw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _w$$\end{document} and friction velocity uτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_\tau$$\end{document}. These data are then used for the calculation of space-time correlation maps of wall shear stress and velocity.
引用
收藏
相关论文
共 50 条
  • [41] Dissipation rate estimation in the turbulent boundary layer using high-speed planar particle image velocimetry
    Dinar Zaripov
    Renfu Li
    Nikolay Dushin
    Experiments in Fluids, 2019, 60
  • [42] Dissipation rate estimation in the turbulent boundary layer using high-speed planar particle image velocimetry
    Zaripov, Dinar
    Li, Renfu
    Dushin, Nikolay
    EXPERIMENTS IN FLUIDS, 2019, 60 (01)
  • [43] Turbulence statistics and flow structure in fluid flow using particle image velocimetry technique: review
    Ayegba, Paul Onubi
    Edomwonyi-Otu, Lawrence C.
    ENGINEERING REPORTS, 2020, 2 (03)
  • [44] Planar velocity visualization in high-speed wedge flow using Doppler Picture Velocimetry (DPV) compared with Particle Image Velocimetry (PIV)
    F. Seiler
    M. Havermann
    A. George
    F. Leopold
    J. Srulijes
    Journal of Visualization, 2003, 6 : 253 - 262
  • [45] Planar velocity visualization in high-speed wedge flow using Doppler Picture Velocimetry (DPV) compared with Particle Image Velocimetry (PIV)
    Seiler, F
    Havermann, M
    George, A
    Leopold, F
    Srulijes, J
    JOURNAL OF VISUALIZATION, 2003, 6 (03) : 253 - 262
  • [46] Measurement of spectrum with particle image velocimetry
    Amit Agrawal
    Experiments in Fluids, 2005, 39 : 836 - 840
  • [47] Measurement of spectrum with particle image velocimetry
    Agrawal, A
    EXPERIMENTS IN FLUIDS, 2005, 39 (05) : 836 - 840
  • [48] A new method for decomposition of high speed particle image velocimetry data
    Gopalan, Balaji
    Shaffer, Franklin
    POWDER TECHNOLOGY, 2012, 220 : 164 - 171
  • [49] Investigation of inner-outer interactions in a turbulent boundary layer using high-speed particle image velocimetry
    Pathikonda, Gokul
    Christensen, Kenneth T.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (03)
  • [50] DEVELOPMENT OF A HIGH-SPEED PARTICLE IMAGE VELOCIMETRY TECHNIQUE USING FLUORESCENT TRACERS TO STUDY STEAM BUBBLE COLLAPSE
    PHILIP, OG
    SCHMIDL, WD
    HASSAN, YA
    NUCLEAR ENGINEERING AND DESIGN, 1994, 149 (1-3) : 375 - 385