High-speed particle image velocimetry for the efficient measurement of turbulence statistics

被引:0
|
作者
Christian E. Willert
机构
[1] Institute for Propulsion Technology,German Aerospace Center (DLR)
来源
Experiments in Fluids | 2015年 / 56卷
关键词
Wall Shear Stress; Direct Numerical Simulation; Turbulent Boundary Layer; Laser Doppler Anemometry; Viscous Sublayer;
D O I
暂无
中图分类号
学科分类号
摘要
A high-frame-rate camera and a continuous-wave laser are used to capture long particle image sequences exceeding 100,000 consecutive frames at framing frequencies up to 20 kHz. The electronic shutter of the high-speed CMOS camera is reduced to 10μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu$$\end{document}s to prevent excessive particle image streaking. The combination of large image number and high frame rate is possible by limiting the field of view to a narrow strip, primarily to capture temporally resolved profiles of velocity and derived quantities, such as vorticity as well as higher order statistics. Multi-frame PIV processing algorithms are employed to improve the dynamic range of recovered PIV data. The recovered data are temporally well resolved and provide sufficient samples for statistical convergence of the fluctuating velocity components. The measurement technique is demonstrated on a spatially developing turbulent boundary layer inside a small wind tunnel with Reδ=4,800,Reτ=240\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_\delta = 4{,}800,\, Re_\tau = 240$$\end{document} and Reθ=515\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_\theta = 515$$\end{document}. The chosen magnification permits a reliable estimation of the mean velocity profile down to a few wall units and yields statistical information such as the Reynolds stress components and probability density functions. By means of single-line correlation, it is further possible to extract the near-wall velocity profile in the viscous sublayer, both time-averaged as well as instantaneous, which permits the estimation the wall shear rate γ˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\gamma }$$\end{document} and along with it the shear stress τw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _w$$\end{document} and friction velocity uτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_\tau$$\end{document}. These data are then used for the calculation of space-time correlation maps of wall shear stress and velocity.
引用
收藏
相关论文
共 50 条
  • [21] PARTICLE PLUME VELOCITIES EXTRACTED FROM HIGH-SPEED THERMOGRAMS THROUGH PARTICLE IMAGE VELOCIMETRY
    Ortega, Jesus D.
    Anaya, Guillermo
    Vorobieff, Peter
    Ho, Clifford K.
    Mohan, Gowtham
    PROCEEDINGS OF THE ASME 2021 15TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY (ES2021), 2021,
  • [22] Single sensor fiber-based high-speed tomographic particle image velocimetry
    Reyes, Jonathan
    Knaus, Darin
    Micka, Danny
    Davis, Brynmor
    Belovich, Vincent
    Ahmed, Kareem
    OPTICS LETTERS, 2019, 44 (11) : 2748 - 2751
  • [23] High-Speed Particle Image Velocimetry and Force Measurements of Bio-Inspired Surfaces
    Winzen, A.
    Klaas, M.
    Schroeder, W.
    JOURNAL OF AIRCRAFT, 2015, 52 (02): : 471 - 485
  • [24] A study on trailing edge noise sources using high-speed particle image velocimetry
    Schroeder, A.
    Herr, M.
    Lauke, T.
    Dierksheide, U.
    NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS V, 2006, 92 : 373 - +
  • [25] High-Speed Schlieren and Particle Image Velocimetry of the Exhaust Flow of a Pulse Detonation Combustor
    Haghdoost, Mohammad Rezay
    Edgington-Mitchell, Daniel
    Paschereit, Christian Oliver
    Oberleithner, Kilian
    AIAA JOURNAL, 2020, 58 (08) : 3527 - 3543
  • [26] Errors in particle tracking velocimetry with high-speed cameras
    Feng, Yan
    Goree, J.
    Liu, Bin
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (05):
  • [27] Endoscopic high-speed particle image velocimetry (eHS-PIV) in a high tumble production engine
    Kim, Dongchan
    Rao, Lingzhe
    Oh, Heechang
    Kook, Sanghoon
    EXPERIMENTS IN FLUIDS, 2020, 61 (10)
  • [28] Endoscopic high-speed particle image velocimetry (eHS-PIV) in a high tumble production engine
    Dongchan Kim
    Lingzhe Rao
    Heechang Oh
    Sanghoon Kook
    Experiments in Fluids, 2020, 61
  • [29] Studies of a Split Injection Strategy in a Gasoline Engine via High-Speed Particle Image Velocimetry
    Dhanji, Meghnaa
    Zhao, Hua
    SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2021, 14 (02) : 95 - 121
  • [30] Particle Image Velocimetry Characterization of High-Speed Centrifugal Compressor Impeller-Diffuser Interaction
    Gallier, Kirk
    Lawless, Patrick B.
    Fleeter, Sanford
    JOURNAL OF PROPULSION AND POWER, 2010, 26 (04) : 784 - 789