High-speed particle image velocimetry for the efficient measurement of turbulence statistics

被引:0
|
作者
Christian E. Willert
机构
[1] Institute for Propulsion Technology,German Aerospace Center (DLR)
来源
Experiments in Fluids | 2015年 / 56卷
关键词
Wall Shear Stress; Direct Numerical Simulation; Turbulent Boundary Layer; Laser Doppler Anemometry; Viscous Sublayer;
D O I
暂无
中图分类号
学科分类号
摘要
A high-frame-rate camera and a continuous-wave laser are used to capture long particle image sequences exceeding 100,000 consecutive frames at framing frequencies up to 20 kHz. The electronic shutter of the high-speed CMOS camera is reduced to 10μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu$$\end{document}s to prevent excessive particle image streaking. The combination of large image number and high frame rate is possible by limiting the field of view to a narrow strip, primarily to capture temporally resolved profiles of velocity and derived quantities, such as vorticity as well as higher order statistics. Multi-frame PIV processing algorithms are employed to improve the dynamic range of recovered PIV data. The recovered data are temporally well resolved and provide sufficient samples for statistical convergence of the fluctuating velocity components. The measurement technique is demonstrated on a spatially developing turbulent boundary layer inside a small wind tunnel with Reδ=4,800,Reτ=240\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_\delta = 4{,}800,\, Re_\tau = 240$$\end{document} and Reθ=515\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_\theta = 515$$\end{document}. The chosen magnification permits a reliable estimation of the mean velocity profile down to a few wall units and yields statistical information such as the Reynolds stress components and probability density functions. By means of single-line correlation, it is further possible to extract the near-wall velocity profile in the viscous sublayer, both time-averaged as well as instantaneous, which permits the estimation the wall shear rate γ˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\gamma }$$\end{document} and along with it the shear stress τw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _w$$\end{document} and friction velocity uτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_\tau$$\end{document}. These data are then used for the calculation of space-time correlation maps of wall shear stress and velocity.
引用
收藏
相关论文
共 50 条
  • [1] High-speed particle image velocimetry for the efficient measurement of turbulence statistics
    Willert, Christian E.
    EXPERIMENTS IN FLUIDS, 2015, 56 (01)
  • [2] High-speed local particle injection for particle image velocimetry
    Brooks, Jonathan M.
    Gupta, Ashwani K.
    Smith, Michael
    Marineau, Eric
    Tatum, Kenneth E.
    AIAA Journal, 2019, 57 (10): : 4490 - 4503
  • [3] High-Speed Local Particle Injection for Particle Image Velocimetry
    Brooks, Jonathan M.
    Gupta, Ashwani K.
    Smith, Michael
    Marineau, Eric
    Tatum, Kenneth E.
    AIAA JOURNAL, 2019, 57 (10) : 4490 - 4503
  • [4] High-speed Particle Image Velocimetry Near Surfaces
    Lu, Louise
    Sick, Volker
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (76):
  • [5] High-Speed Image Velocimetry System for Rainfall Measurement
    Chen, Chih-Yen
    Hsieh, Chi-Wen
    Chi, Po-Wei
    Lin, Chun-Fu
    Weng, Chun-Jen
    Hwang, Chi-Hung
    IEEE ACCESS, 2018, 6 : 20929 - 20936
  • [6] Particle Image Velocimetry in a Nonreacting and Reacting High-Speed Cavity
    Tuttle, Steven G.
    Carter, Campbell D.
    Hsu, Kuang-Yu
    JOURNAL OF PROPULSION AND POWER, 2014, 30 (03) : 576 - 591
  • [7] Application of particle image velocimetry in high-speed separated flows
    Molezzi, M.J.
    Dutton, J.C.
    1600, (31):
  • [8] APPLICATION OF PARTICLE IMAGE VELOCIMETRY IN HIGH-SPEED SEPARATED FLOWS
    MOLEZZI, MJ
    DUTTON, JC
    AIAA JOURNAL, 1993, 31 (03) : 438 - 446
  • [9] Measurement of in-Cylinder turbulence in an internal combustion engine using high speed particle image velocimetry
    Okura, Yasuhiro
    Higuchi, Kazuya
    Urata, Yasuhiro
    Someya, Satoshi
    Tanahashi, Mamoru
    Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2013, 79 (806): : 2193 - 2206
  • [10] High-speed photography and particle image velocimetry of cavitation in a Venturi tube
    Wang, Zhen
    Zhao, Qin
    Yang, Zeyuan
    Liang, Ruifeng
    Li, Zhenggui
    PHYSICS OF FLUIDS, 2024, 36 (04)