Some generalizations for singular value inequalities of compact operators

被引:0
|
作者
Wasim Audeh
机构
[1] University of Petra,
来源
关键词
Singular value; Compact operator; Inequality; Positive operator; 15A18; 15A42; 47A63; 47B07; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
Audeh and Kittaneh have proved the following. Let X, Y and Z be compact operators on a complex separable Hilbert space such that XZZ∗Y≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{cc} X &{} Z \\ Z^{*} &{} Y \end{array} \right] \ge 0$$\end{document}. Then sj(Z)≤sj(X⊕Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} s_{j}(Z)\le s_{j}(X\oplus Y) \end{aligned}$$\end{document}for j=1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,\ldots $$\end{document} In this paper, we provide a considerable generalization of this singular value inequality, which states that: Let X, Y and Z be compact operators on a complex separable Hilbert space such that XZZ∗Y≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{cc} X &{} Z \\ Z^{*} &{} Y \end{array} \right] \ge 0$$\end{document} and let A, B be bounded linear operators on a complex separable Hilbert space. Then sj(AZB∗)≤maxA2,B2sj(X⊕Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} s_{j}(AZB^{*})\le \max \left\{ \left\| A\right\| ^{2},\left\| B\right\| ^{2}\right\} s_{j}(X\oplus Y) \end{aligned}$$\end{document}for j=1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,\ldots $$\end{document} Several generalizations for singular value inequalities of compact operators are also given.
引用
收藏
相关论文
共 50 条
  • [41] Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators
    Messaoud Guesba
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 681 - 692
  • [42] Subadditivity Inequalities for Compact Operators
    Bourin, Jean-Christophe
    Harada, Tetsuo
    Lee, Eun-Young
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01): : 25 - 36
  • [43] Singular traces and compact operators
    Albeverio, S
    Guido, D
    Ponosov, A
    Scarlatti, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (02) : 281 - 302
  • [44] SINGULAR VALUES OF COMPACT OPERATORS
    FAN, K
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (JAN): : 187 - +
  • [45] Generalizations of Some Differential Inequalities for Polynomials
    M. Y. Mir
    S. L. Wali
    W. M. Shah
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 282 - 288
  • [46] Some generalizations of inequalities for sector matrices
    Yang, Chaojun
    Lu, Fangyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [47] Some generalizations of inequalities for sector matrices
    Chaojun Yang
    Fangyan Lu
    Journal of Inequalities and Applications, 2018
  • [48] SOME GENERALIZATIONS AND COMPLEMENTS OF DETERMINANTAL INEQUALITIES
    Abbas, Hassane
    Ghabries, Mohammad M.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 169 - 176
  • [49] Generalizations of some reverse integral inequalities
    Yang, GS
    Hwang, DY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (01) : 193 - 204
  • [50] Generalizations of Some Differential Inequalities for Polynomials
    Mir, M. Y.
    Wali, S. L.
    Shah, W. M.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (04): : 282 - 288