Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators

被引:0
|
作者
Messaoud Guesba
机构
[1] El Oued University,Department of Mathematics, Faculty of Exact Sciences
关键词
Positive operator; Semi-inner product; Numerical radius; Semi-norm; 47A05; 47A55; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a positive bounded linear operator on a Hilbert space H,.,.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( { {\mathscr {H}}},\left\langle .,.\right\rangle \right) $$\end{document}. The semi-inner product x,yA:=Ax,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle x,y\right\rangle _{A}:=\left\langle Ax,y\right\rangle $$\end{document}, x, y∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document}, induces a semi-norm .A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| .\right\| _{A}$$\end{document} on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document}. Let ωA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{A}$$\end{document}T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( T\right) $$\end{document} denote the A -numerical radius of an operator T in semi-Hilbertian space H,.A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( { {\mathscr {H}}},\left\| .\right\| _{A}\right) $$\end{document}. Our aim in this paper is to give new inequalities of A-numerical radius of operators in semi-Hilbertian spaces. In particular, we show that ωAnT≤12n-1ωATn+TA∑p=1n-112pωAn-p-1TTpA,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \omega _{A}^{n}\left( T\right) \le \frac{1}{2^{n-1}}\omega _{A}\left( T^{n}\right) +\left\| T\right\| _{A}\displaystyle \sum _{p=1}^{n-1}\frac{ 1}{2^{p}}\omega _{A}^{n-p-1}\left( T\right) \left\| T^{p}\right\| _{A}, \end{aligned}$$\end{document}for all n=2,3,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3,\ldots $$\end{document} Further, an extension of some inequalities of bounded linear operators on a Hilbert space due to Dragomir (Inequalities for the numerical radius of linear operators in Hilbert spaces. Springer briefs in mathematics, Springer, Berlin, 2013; Tamkang J Math 39(1):1–7, 2008) and Kittaneh et al. (Linear Algebra Appl 471:46–53, 2015) are proved on a semi-Hilbert space and some more related results are also obtained.
引用
收藏
页码:681 / 692
页数:11
相关论文
共 50 条