On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators

被引:0
|
作者
Cristian Conde
Kais Feki
机构
[1] Instituto Argentino de Matemática “Alberto Calderón”,Instituto de Ciencias
[2] Universidad Nacional de Gral. Sarmiento,Faculty of Economic Sciences and Management of Mahdia
[3] University of Monastir,Laboratory Physics
[4] University of Sfax,Mathematics and Applications (LR/13/ES
来源
Ricerche di Matematica | 2024年 / 73卷
关键词
Positive operator; Joint numerical radius; Normal operator; Operator matrices; 47A12; 47A30; 47A63; 46C05; 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a positive (semidefinite) bounded linear operator on a complex Hilbert space (H,⟨·,·⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathcal {H}}, \langle \cdot , \cdot \rangle \big )$$\end{document}. The semi-inner product induced by A is defined by ⟨x,y⟩A:=⟨Ax,y⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle x, y\rangle }_A := \langle Ax, y\rangle $$\end{document} for all x,y∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y\in {\mathcal {H}}$$\end{document} and defines a seminorm ‖·‖A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Vert \cdot \Vert }_A$$\end{document} on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}. This makes H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} into a semi-Hilbert space. For p∈[1,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,+\infty )$$\end{document}, the generalized A-joint numerical radius of a d-tuple of operators T=(T1,…,Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {T}}=(T_1,\ldots ,T_d)$$\end{document} is given by ωA,p(T)=sup‖x‖A=1∑k=1d|〈Tkx,x〉A|p1p.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \omega _{A,p}({\mathbf {T}}) =\sup _{\Vert x\Vert _A=1}\left( \sum _{k=1}^d|\big \langle T_kx, x\big \rangle _A|^p\right) ^{\frac{1}{p}}. \end{aligned}$$\end{document}Our aim in this paper is to establish several bounds involving ωA,p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{A,p}(\cdot )$$\end{document}. In particular, under suitable conditions on the operators tuple T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {T}}$$\end{document}, we generalize the well-known inequalities due to Kittaneh (Studia Math 168(1):73–80, 2005).
引用
下载
收藏
页码:661 / 679
页数:18
相关论文
共 50 条
  • [1] On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
    Conde, Cristian
    Feki, Kais
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 661 - 679
  • [2] SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS
    Feki, Kais
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1385 - 1405
  • [3] Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators
    Messaoud Guesba
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 681 - 692
  • [4] Some new refinements of numerical radius inequalities for Hilbert and semi-Hilbert space operators
    Taki, Zakaria
    Kaadoud, Mohamed Chraibi
    FILOMAT, 2023, 37 (20) : 6925 - 6947
  • [5] Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators
    Guesba, Messaoud
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (04): : 681 - 692
  • [6] On some inequalities for numerical radius of semi-Hilbert space multioperators
    Guesba, Messaoud
    Mahmoud, Sid Ahmed Ould Ahmed
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (01) : 35 - 45
  • [7] Some numerical radius inequality for several semi-Hilbert space operators
    Conde, Cristian
    Feki, Kais
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06): : 1054 - 1071
  • [8] A-Numerical Radius of Semi-Hilbert Space Operators
    Guesba, Messaoud
    Bhunia, Pintu
    Paul, Kallol
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (01) : 227 - 242
  • [9] A-numerical radius inequalities and A-translatable radii of semi-Hilbert space operators
    Guesba, Messaoud
    Bhunia, Pintu
    Paul, Kallol
    FILOMAT, 2023, 37 (11) : 3443 - 3456
  • [10] On some generalized numerical radius inequalities for Hilbert space operators
    Alrimawi, Fadi
    Kawariq, Hani
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (03): : 257 - 262