Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators

被引:0
|
作者
Messaoud Guesba
机构
[1] El Oued University,Department of Mathematics, Faculty of Exact Sciences
关键词
Positive operator; Semi-inner product; Numerical radius; Semi-norm; 47A05; 47A55; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a positive bounded linear operator on a Hilbert space H,.,.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( { {\mathscr {H}}},\left\langle .,.\right\rangle \right) $$\end{document}. The semi-inner product x,yA:=Ax,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle x,y\right\rangle _{A}:=\left\langle Ax,y\right\rangle $$\end{document}, x, y∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document}, induces a semi-norm .A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| .\right\| _{A}$$\end{document} on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document}. Let ωA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{A}$$\end{document}T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( T\right) $$\end{document} denote the A -numerical radius of an operator T in semi-Hilbertian space H,.A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( { {\mathscr {H}}},\left\| .\right\| _{A}\right) $$\end{document}. Our aim in this paper is to give new inequalities of A-numerical radius of operators in semi-Hilbertian spaces. In particular, we show that ωAnT≤12n-1ωATn+TA∑p=1n-112pωAn-p-1TTpA,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \omega _{A}^{n}\left( T\right) \le \frac{1}{2^{n-1}}\omega _{A}\left( T^{n}\right) +\left\| T\right\| _{A}\displaystyle \sum _{p=1}^{n-1}\frac{ 1}{2^{p}}\omega _{A}^{n-p-1}\left( T\right) \left\| T^{p}\right\| _{A}, \end{aligned}$$\end{document}for all n=2,3,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3,\ldots $$\end{document} Further, an extension of some inequalities of bounded linear operators on a Hilbert space due to Dragomir (Inequalities for the numerical radius of linear operators in Hilbert spaces. Springer briefs in mathematics, Springer, Berlin, 2013; Tamkang J Math 39(1):1–7, 2008) and Kittaneh et al. (Linear Algebra Appl 471:46–53, 2015) are proved on a semi-Hilbert space and some more related results are also obtained.
引用
收藏
页码:681 / 692
页数:11
相关论文
共 50 条
  • [31] Numerical Radius Inequalities for Hilbert Space Operators
    Alomari, Mohammad W.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (07)
  • [32] Numerical radius inequalities for Hilbert space operators
    Kittaneh, F
    STUDIA MATHEMATICA, 2005, 168 (01) : 73 - 80
  • [33] NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Al-Dolat, Mohammed
    Al-Zoubi, Khaldoun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1041 - 1049
  • [34] Numerical Radius Inequalities for Hilbert Space Operators
    Mohammad W. Alomari
    Complex Analysis and Operator Theory, 2021, 15
  • [35] IMPROVEMENTS OF A-NUMERICAL RADIUS FOR SEMI-HILBERTIAN SPACE OPERATORS
    Qiao, Hongwei
    Hai, Guojun
    Chen, Alatancang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 791 - 810
  • [36] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR OPERATORS IN HILBERT C*-MODULES SPACE
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 77 - 84
  • [37] SOME IMPROVEMENTS ABOUT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Yang, Changsen
    Li, Dan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (01): : 219 - 234
  • [38] Some inequalities for the numerical radius for Hilbert C*-modules space operators
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    Moosavi, Baharak
    Moradi, Hamid Reza
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) : 255 - 260
  • [39] Inequalities and Reverse Inequalities for the Joint A-Numerical Radius of Operators
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    AXIOMS, 2023, 12 (03)
  • [40] Generalized A-Numerical Radius of Operators and Related Inequalities
    Pintu Bhunia
    Kais Feki
    Kallol Paul
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3883 - 3907