Whaley's Theorem for Finite Lattices

被引:0
|
作者
Ralph Freese
Jennifer Hyndman
J. B. Nation
机构
[1] University of Hawaii,Department of Mathematics
关键词
lattice; ordered set; sublattice; maximal sublattice;
D O I
10.1023/B:ORDE.0000026464.36426.09
中图分类号
学科分类号
摘要
Whaley's Theorem on the existence of large proper sublattices of infinite lattices is extended to ordered sets and finite lattices. As a corollary it is shown that every finite lattice L with |L|≥3 contains a proper sublattice S with |S|≥|L|1/3. It is also shown that that every finite modular lattice L with |L|≥3 contains a proper sublattice S with |S|≥|L|1/2, and every finite distributive lattice L with |L|≥4 contains a proper sublattice S with |S|≥3/4|L|.
引用
收藏
页码:223 / 228
页数:5
相关论文
共 50 条
  • [31] Finite lattices as relative congruence lattices of finite algebras
    A. M. Nurakunov
    Algebra universalis, 2007, 57 : 207 - 214
  • [32] AN EXTENSION OF F. SIK'S THEOREM ON MODULAR LATTICES
    Lazarz, Marcin
    MATHEMATICA SLOVACA, 2018, 68 (06) : 1321 - 1326
  • [33] FINITE LATTICES
    WILLE, R
    MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (02) : 103 - 107
  • [34] Green's function and excitation spectrum of finite lattices
    Cojocaru, S.
    Barsan, V.
    Ceulemans, A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (08): : 1963 - 1977
  • [35] On representing finite lattices as intervals in subgroup lattices of finite groups
    Baddeley, R
    Lucchini, A
    JOURNAL OF ALGEBRA, 1997, 196 (01) : 1 - 100
  • [36] Computing congruence lattices of finite lattices
    Freese, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) : 3457 - 3463
  • [37] A generalization of Gray and Whaley's reset option
    François-Heude A.
    Yousfi O.
    Journal of Asset Management, 2015, 16 (4) : 223 - 235
  • [38] Reiterman's Theorem on Finite Algebras for a Monad
    Adamek, Jiri
    Chen, Liang-Ting
    Milius, Stefan
    Urbat, Henning
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2021, 22 (04)
  • [39] Congruence lattices of finite semimodular lattices
    Gratzer, G
    Lakser, H
    Schmidt, ET
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03): : 290 - 297
  • [40] Gotzmann's persistence theorem for finite modules
    Stahl, Gustav Saeden
    JOURNAL OF ALGEBRA, 2017, 477 : 278 - 293