Computing congruence lattices of finite lattices

被引:11
|
作者
Freese, R [1 ]
机构
[1] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
关键词
congruence lattice; algorithm;
D O I
10.1090/S0002-9939-97-04332-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inequality between the number of coverings in the ordered set J(Con L) of join irreducible congruences on a lattice L and the size of L is given. Using this inequality it is shown that this ordered set can be computed in time O(n(2) log(2) n), where n = \L\.
引用
收藏
页码:3457 / 3463
页数:7
相关论文
共 50 条
  • [1] Congruence lattices of finite semimodular lattices
    Gratzer, G
    Lakser, H
    Schmidt, ET
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03): : 290 - 297
  • [2] Finite lattices as relative congruence lattices of finite algebras
    Nurakunov, A. M.
    ALGEBRA UNIVERSALIS, 2007, 57 (02) : 207 - 214
  • [3] Finite lattices as relative congruence lattices of finite algebras
    A. M. Nurakunov
    Algebra universalis, 2007, 57 : 207 - 214
  • [4] Finite distributive lattices are congruence lattices of almost-geometric lattices
    Czedli, Gabor
    Schmidt, E. Tamas
    ALGEBRA UNIVERSALIS, 2011, 65 (01) : 91 - 108
  • [5] Finite distributive lattices are congruence lattices of almost-geometric lattices
    Gábor Czédli
    E. Tamás Schmidt
    Algebra universalis, 2011, 65 : 91 - 108
  • [6] SMALL REPRESENTATIONS OF FINITE DISTRIBUTIVE LATTICES AS CONGRUENCE LATTICES
    GRATZER, G
    RIVAL, I
    ZAGUIA, N
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) : 1959 - 1961
  • [7] Automata with Finite Congruence Lattices
    Babcsanyi, Istvan
    ACTA CYBERNETICA, 2007, 18 (01): : 155 - 165
  • [8] Automata with finite congruence lattices
    Department of Algebra, Mathematical Institute, Budapest University of Technology and Economics, Egry József u. 1, 1111 Budapest, Hungary
    Acta Cybern, 2007, 1 (155-165):
  • [9] Finite modular congruence lattices
    Pál Hegedüs
    Péter P. Pálfy
    algebra universalis, 2005, 54 : 105 - 120
  • [10] Finite modular congruence lattices
    Hegedüs, P
    Pálfy, PP
    ALGEBRA UNIVERSALIS, 2005, 54 (01) : 105 - 120