Computing congruence lattices of finite lattices

被引:11
|
作者
Freese, R [1 ]
机构
[1] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
关键词
congruence lattice; algorithm;
D O I
10.1090/S0002-9939-97-04332-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inequality between the number of coverings in the ordered set J(Con L) of join irreducible congruences on a lattice L and the size of L is given. Using this inequality it is shown that this ordered set can be computed in time O(n(2) log(2) n), where n = \L\.
引用
收藏
页码:3457 / 3463
页数:7
相关论文
共 50 条
  • [21] CONGRUENCE LATTICES OF FINITE-ALGEBRAS
    HOBBY, D
    ALGEBRA UNIVERSALIS, 1986, 23 (01) : 44 - 57
  • [22] Congruence-preserving extensions of finite lattices to sectionally complemented lattices
    Grätzer, G
    Schmidt, ET
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) : 1903 - 1915
  • [23] CONGRUENCE LATTICES OF FUNCTION LATTICES
    GRATZER, G
    SCHMIDT, ET
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1994, 11 (03): : 211 - 220
  • [24] CONGRUENCE LATTICES OF MODULAR LATTICES
    SCHMIDT, ET
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (1-2): : 129 - 134
  • [25] Congruence lattices of uniform lattices
    Grätzer, G
    Schmidt, ET
    Thomsen, K
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (02): : 247 - 263
  • [26] CONGRUENCE LATTICES OF PLANAR LATTICES
    GRATZER, G
    LAKSER, H
    ACTA MATHEMATICA HUNGARICA, 1992, 60 (3-4) : 251 - 268
  • [27] CONGRUENCE LATTICES OF FINITE P-ALGEBRAS
    KATRINAK, T
    ALGEBRA UNIVERSALIS, 1994, 31 (04) : 475 - 491
  • [28] Finite pseudocomplemented lattices: The spectra and the Glivenko congruence
    Katrinak, T.
    Gurican, J.
    ALGEBRA UNIVERSALIS, 2011, 66 (1-2) : 151 - 161
  • [29] The lattice of congruence lattices of algebras on a finite set
    Jakubikova-Studenovska, Danica
    Poeschel, Reinhard
    Radeleczki, Sandor
    ALGEBRA UNIVERSALIS, 2018, 79 (01)
  • [30] Finite pseudocomplemented lattices: The spectra and the Glivenko congruence
    T. Katriňák
    J. Guričan
    Algebra universalis, 2011, 66