Strong solutions for two-phase free boundary problems for a class of non-Newtonian fluids

被引:0
|
作者
Matthias Hieber
Hirokazu Saito
机构
[1] TU Darmstadt,Department of Mathematics
[2] University of Pittsburgh,607 Benedum Engineering Hall
[3] Waseda University,Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering
来源
关键词
Two-phase free boundary problems; non-Newtonian fluids; strong solutions; surface tension; Primary: 35Q35; Secondary: 76D45;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the two-phase free boundary problem subject to surface tension and gravitational forces for a class of non-Newtonian fluids with stress tensors Tn of the form Tn=-qI+μn(|D(v)|2)D(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_n=-qI+\mu_n(|D(v)|^2)D(v)}$$\end{document} for n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n=1,2}$$\end{document}, respectively, where the viscosity functions μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n}$$\end{document} satisfy μn∈C3([0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n\in C^3([0,\infty))}$$\end{document} and μn(0)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n(0) > 0}$$\end{document} for n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n=1,2}$$\end{document}. It is shown that for given T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T > 0}$$\end{document} this problem admits a unique strong solution on (0,T) provided the initial data are sufficiently small in their natural norms.
引用
收藏
页码:335 / 358
页数:23
相关论文
共 50 条
  • [1] Strong solutions for two-phase free boundary problems for a class of non-Newtonian fluids
    Hieber, Matthias
    Saito, Hirokazu
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (01) : 335 - 358
  • [2] Similarity solutions to a class of boundary layer problems in the theory of non-Newtonian fluids
    Zheng, LC
    He, JC
    Wu, B
    3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 580 - 583
  • [3] Analytical solutions to a class of non-Newtonian fluids with free boundaries
    Fang, Li
    Guo, Zhenhua
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [4] Global strong solutions for a class of compressible non-Newtonian fluids with vacuum
    Wang, Changjia
    Yuan, Hongjun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (04) : 397 - 417
  • [5] Existence and uniqueness of strong solutions for a class of compressible non-Newtonian fluids with singularity
    Wucai Yang
    Qiu Meng
    Yuanyuan Zhao
    Ricerche di Matematica, 2023, 72 : 423 - 442
  • [6] Global strong solutions of a class of non-Newtonian fluids with small initial energy
    Yuan, Hongjun
    Si, Xin
    Feng, Zhaosheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 72 - 93
  • [7] Existence and uniqueness of strong solutions for a class of compressible non-Newtonian fluids with singularity
    Yang, Wucai
    Meng, Qiu
    Zhao, Yuanyuan
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 423 - 442
  • [8] Existence of free-boundary for a two non-Newtonian fluids problem
    Gomez, N
    Zolésio, JP
    SHAPE OPTIMIZATION AND OPTIMAL DESIGN, 2001, 216 : 289 - 300
  • [9] Immiscible displacements of two-phase non-Newtonian fluids in porous media
    Tian, Ju-Ping
    Yao, Kai-Lun
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 261 (3-4): : 174 - 178
  • [10] Immiscible displacements of two-phase non-Newtonian fluids in porous media
    Tian, JP
    Yao, KL
    PHYSICS LETTERS A, 1999, 261 (3-4) : 174 - 178