Strong solutions for two-phase free boundary problems for a class of non-Newtonian fluids

被引:0
|
作者
Matthias Hieber
Hirokazu Saito
机构
[1] TU Darmstadt,Department of Mathematics
[2] University of Pittsburgh,607 Benedum Engineering Hall
[3] Waseda University,Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering
来源
关键词
Two-phase free boundary problems; non-Newtonian fluids; strong solutions; surface tension; Primary: 35Q35; Secondary: 76D45;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the two-phase free boundary problem subject to surface tension and gravitational forces for a class of non-Newtonian fluids with stress tensors Tn of the form Tn=-qI+μn(|D(v)|2)D(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_n=-qI+\mu_n(|D(v)|^2)D(v)}$$\end{document} for n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n=1,2}$$\end{document}, respectively, where the viscosity functions μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n}$$\end{document} satisfy μn∈C3([0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n\in C^3([0,\infty))}$$\end{document} and μn(0)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n(0) > 0}$$\end{document} for n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n=1,2}$$\end{document}. It is shown that for given T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T > 0}$$\end{document} this problem admits a unique strong solution on (0,T) provided the initial data are sufficiently small in their natural norms.
引用
收藏
页码:335 / 358
页数:23
相关论文
共 50 条