A square function involving the center of mass and rectifiability

被引:0
|
作者
Michele Villa
机构
[1] University of Oulu,Research Unit of Mathematical Sciences
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
Rectifiability; Tangent points; Beta numbers; Hausdorff content; 28A75; 28A12; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
For a Radon measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, define Cμn(x,t)=1tn∫B(x,t)x-ytdμ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^n_\mu (x, t)= \left( \frac{1}{t^n} \left| \int _{B(x,t)} \frac{x-y}{t} \, d\mu (y)\right| \right) $$\end{document}. This coefficient quantifies how symmetric the measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is by comparing the center of mass at a given scale and location to the actual center of the ball. We show that if μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is n-rectifiable, then ∫0∞|Cμn(x,t)|2dtt<∞μ-almosteverywhere.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _0^\infty |C^n_\mu (x,t)|^2 \frac{dt}{t}< \infty \mu \text{-almost } \text{ everywhere }. \end{aligned}$$\end{document}Together with a previous result of Mayboroda and Volberg, where they showed that the converse holds true, this gives a new characterisation of n-rectifiability. To prove our main result, we also show that for an n-uniformly rectifiable measure, |Cμn(x,t)|2dttdμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|C_\mu ^n(x,t)|^2 \frac{dt}{t}d\mu $$\end{document} is a Carleson measure on spt(μ)×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {spt}(\mu ) \times (0,\infty )$$\end{document}. We also show that, whenever a measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is 1-rectifiable in the plane, then the same Dini condition as above holds for more general kernels. We also give a characterisation of uniform 1-rectifiability in the plane in terms of a Carleson measure condition. This uses a classification of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}-symmetric measures from Villa (Rev Mat Iberoam, 2019).
引用
收藏
页码:3207 / 3244
页数:37
相关论文
共 50 条
  • [41] Center-of-Mass Tomography and Wigner Function for Multimode Photon States
    Ivan V. Dudinets
    Vladimir I. Man’ko
    International Journal of Theoretical Physics, 2018, 57 : 1631 - 1644
  • [42] Constraints on the stellar mass function from stellar dynamics at the Galactic center
    Alexander, Richard D.
    Begelman, Mitchell C.
    Armitage, Philip J.
    ASTROPHYSICAL JOURNAL, 2007, 654 (02): : 907 - 914
  • [43] Center-of-Mass Tomography and Wigner Function for Multimode Photon States
    Dudinets, Ivan V.
    Man'ko, Vladimir I.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (06) : 1631 - 1644
  • [44] The intrinsic square function
    Wilson, Michael
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 771 - 791
  • [45] EIGENVALUE OF SQUARE OF A FUNCTION
    FINK, AM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) : 73 - &
  • [46] Calculation of two-center integrals involving a rapidly oscillating free electron wave function
    OpdeBeek, SS
    Driessen, JPJ
    Beijerinck, HCW
    Verhaar, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (01): : 182 - 194
  • [47] Mass media and Tiananmen Square
    Zhu, JH
    JOURNAL OF COMMUNICATION, 1997, 47 (04) : 157 - 164
  • [48] Constrained square-center problems
    Katz, MJ
    Kedem, K
    Segal, M
    ALGORITHM THEORY - SWAT'98, 1998, 1432 : 95 - 106
  • [49] CENTER OF MASS
    SCHWARZ, G
    AMERICAN JOURNAL OF PHYSICS, 1968, 36 (01) : R10 - &
  • [50] CENTER OF MASS
    WELTIN, H
    AMERICAN JOURNAL OF PHYSICS, 1962, 30 (06) : 471 - &