A square function involving the center of mass and rectifiability

被引:0
|
作者
Michele Villa
机构
[1] University of Oulu,Research Unit of Mathematical Sciences
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
Rectifiability; Tangent points; Beta numbers; Hausdorff content; 28A75; 28A12; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
For a Radon measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, define Cμn(x,t)=1tn∫B(x,t)x-ytdμ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^n_\mu (x, t)= \left( \frac{1}{t^n} \left| \int _{B(x,t)} \frac{x-y}{t} \, d\mu (y)\right| \right) $$\end{document}. This coefficient quantifies how symmetric the measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is by comparing the center of mass at a given scale and location to the actual center of the ball. We show that if μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is n-rectifiable, then ∫0∞|Cμn(x,t)|2dtt<∞μ-almosteverywhere.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _0^\infty |C^n_\mu (x,t)|^2 \frac{dt}{t}< \infty \mu \text{-almost } \text{ everywhere }. \end{aligned}$$\end{document}Together with a previous result of Mayboroda and Volberg, where they showed that the converse holds true, this gives a new characterisation of n-rectifiability. To prove our main result, we also show that for an n-uniformly rectifiable measure, |Cμn(x,t)|2dttdμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|C_\mu ^n(x,t)|^2 \frac{dt}{t}d\mu $$\end{document} is a Carleson measure on spt(μ)×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {spt}(\mu ) \times (0,\infty )$$\end{document}. We also show that, whenever a measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is 1-rectifiable in the plane, then the same Dini condition as above holds for more general kernels. We also give a characterisation of uniform 1-rectifiability in the plane in terms of a Carleson measure condition. This uses a classification of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}-symmetric measures from Villa (Rev Mat Iberoam, 2019).
引用
收藏
页码:3207 / 3244
页数:37
相关论文
共 50 条
  • [31] Classical Solutions to a Linear Schrodinger Evolution Equation Involving a Coulomb Potential with a Moving Center of Mass
    Yoshii, Kentarou
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2011, 54 (03): : 485 - 493
  • [32] Perturbed Problems Involving the Square Root of the Laplacian
    Bartolo, Rossella
    Colorado, Eduardo
    Bisci, Giovanni Molica
    MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (01): : 33 - 54
  • [33] NONLINEAR EQUATIONS INVOLVING THE SQUARE ROOT OF THE LAPLACIAN
    Ambrosio, Vincenzo
    Bisci, Giovanni Molica
    Repovs, Dusan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (02): : 151 - 170
  • [34] Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions
    Rubin, Douglas
    Loeb, Abraham
    ADVANCES IN ASTRONOMY, 2011, 2011
  • [35] THE SQUARE IN THE SQUARE + ILLUSTRATED PROJECT FOR A NEW CIVIC CENTER IN ANCONA
    NICOLIN, P
    LOTUS INTERNATIONAL, 1986, 48-9 : 42 - 49
  • [36] DISTRIBUTION FUNCTIONS OF POLYMERS WITH AND WITHOUT INTERACTIONS .1. DISTRIBUTION FUNCTION OF SQUARE DISTANCE OF CENTER OF MASS FROM ONE FIXED END OF A POLYMER-CHAIN
    MINATO, T
    HATANO, A
    POLYMER JOURNAL, 1977, 9 (03) : 239 - 251
  • [37] Equilibrium between energies involving mass and energies not involving mass in terms of atoms
    Changhyun Jin
    MRS Communications, 2023, 13 : 156 - 161
  • [38] Equilibrium between energies involving mass and energies not involving mass in terms of atoms
    Jin, Changhyun
    MRS COMMUNICATIONS, 2023, 13 (01) : 156 - 161
  • [39] Is the center of mass (COM) a reliable parameter for the localization of brain function in fMRI?
    G. Fesl
    B. Braun
    S. Rau
    M. Wiesmann
    M. Ruge
    P. Bruhns
    J. Linn
    T. Stephan
    J. Ilmberger
    J.-C. Tonn
    H. Brückmann
    European Radiology, 2008, 18 : 1031 - 1037
  • [40] Is the center of mass (COM) a reliable parameter for the localization of brain function in fMRI?
    Fesl, G.
    Braun, B.
    Rau, S.
    Wiesmann, M.
    Ruge, M.
    Bruhns, P.
    Linn, J.
    Stephan, T.
    Ilmberger, J.
    Tonn, J. -C.
    Brueckmann, H.
    EUROPEAN RADIOLOGY, 2008, 18 (05) : 1031 - 1037