Limits of Classical Homogenization Procedure for Coupled Diffusion-Heterogeneous Reaction Processes in Porous Media

被引:0
|
作者
Mohamed Khaled Bourbatache
Tien Dung Le
Olivier Millet
Christian Moyne
机构
[1] Institut National des Sciences Appliquées,Laboratoire de Génie Civil et de Génie Mécanique
[2] Université de Lorraine,Laboratoire Energies et Mécanique Théorique et Appliquée
[3] CNRS,Laboratoire des Sciences de l’Ingénieur pour l’Environnement
[4] Université de La Rochelle,undefined
[5] CNRS,undefined
来源
Transport in Porous Media | 2021年 / 140卷
关键词
Diffusion-reaction; Damköhler number; Homogenization;
D O I
暂无
中图分类号
学科分类号
摘要
Upscaling of coupled diffusion-heterogeneous reaction problem in porous media is developed for different orders of magnitude of the Damköhler number. At the pore-scale, the mass transfer of two dilute species is ruled by a diffusion mechanism characterized by different diffusion coefficients. The pore-scale model is completed by reversible linear reaction occurring at the solid–fluid interface. Classical homogenization technique is then used to upscale the pore-scale model under three different scenarios: slow, moderate and high reaction rates corresponding to three orders of magnitude of the Damköhler number. The results show that the macroscopic model obtained for a slow reaction rate predicts accurately the coupled diffusion-reaction process at the macroscale in the range of small Damköhler number. However, the classical homogenization procedure for moderate and high reaction rates fails to capture correctly the complex physics at short time when chemical equilibrium is not reached. In these cases, upscaled models impose strictly the chemical equilibrium at the first order due to the dominance of reaction over diffusion. Numerical simulations highlight the error of the macroscopic models compared to direct numerical simulations.
引用
收藏
页码:437 / 457
页数:20
相关论文
共 50 条
  • [41] SIMULTANEOUS DIFFUSION AND REACTION IN POROUS-MEDIA
    NIGAM, KDP
    SRIVASTAVA, S
    SRIVASTAVA, VK
    INTERNATIONAL JOURNAL OF ENGINEERING FLUID MECHANICS, 1991, 4 (01): : 47 - 56
  • [42] DIFFUSION AND REACTION IN POROUS MEDIA - I.
    Haynes Jr., H.W.
    AIChEMI Modular Instruction, Series E: Kinetics, 1982, 3 : 1 - 8
  • [43] Reaction–Diffusion Equation on Thin Porous Media
    María Anguiano
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3089 - 3110
  • [44] SIMULTANEOUS DIFFUSION AND REACTION IN POROUS-MEDIA
    MEHTA, KN
    TIWARI, MC
    NIGAM, KDP
    INTERNATIONAL JOURNAL OF ENGINEERING FLUID MECHANICS, 1989, 2 (03): : 221 - 234
  • [45] HOMOGENIZATION OF REACTION-DIFFUSION PROCESSES IN A TWO-COMPONENT POROUS MEDIUM WITH NONLINEAR FLUX CONDITIONS AT THE INTERFACE
    Gahn, M.
    Neuss-Radu, M.
    Knabner, P.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (05) : 1819 - 1843
  • [46] DIFFUSION AND REACTION IN POROUS MEDIA - IV.
    Haynes Jr., H.W.
    AIChEMI Modular Instruction, Series E: Kinetics, 1982, 3 : 24 - 29
  • [47] Numerical implementation of the asymptotic theory for classical diffusion in heterogeneous media
    Peter S. Kondratenko
    Alexander L. Matveev
    Alexander D. Vasiliev
    The European Physical Journal B, 2021, 94
  • [48] Numerical implementation of the asymptotic theory for classical diffusion in heterogeneous media
    Kondratenko, Peter S.
    Matveev, Alexander L.
    Vasiliev, Alexander D.
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (02):
  • [49] Numerical homogenization of well singularities in the flow transport through heterogeneous porous media
    Chen, ZM
    Yue, XY
    MULTISCALE MODELING & SIMULATION, 2003, 1 (02): : 260 - 303
  • [50] Numerical simulation and homogenization of two-phase flow in heterogeneous porous media
    Ataie-Ashtiani, B
    Hassanizadeh, SM
    Oostrom, M
    White, MD
    GROUND WATER UPDATES, 2000, : 333 - 338