Limits of Classical Homogenization Procedure for Coupled Diffusion-Heterogeneous Reaction Processes in Porous Media

被引:0
|
作者
Mohamed Khaled Bourbatache
Tien Dung Le
Olivier Millet
Christian Moyne
机构
[1] Institut National des Sciences Appliquées,Laboratoire de Génie Civil et de Génie Mécanique
[2] Université de Lorraine,Laboratoire Energies et Mécanique Théorique et Appliquée
[3] CNRS,Laboratoire des Sciences de l’Ingénieur pour l’Environnement
[4] Université de La Rochelle,undefined
[5] CNRS,undefined
来源
Transport in Porous Media | 2021年 / 140卷
关键词
Diffusion-reaction; Damköhler number; Homogenization;
D O I
暂无
中图分类号
学科分类号
摘要
Upscaling of coupled diffusion-heterogeneous reaction problem in porous media is developed for different orders of magnitude of the Damköhler number. At the pore-scale, the mass transfer of two dilute species is ruled by a diffusion mechanism characterized by different diffusion coefficients. The pore-scale model is completed by reversible linear reaction occurring at the solid–fluid interface. Classical homogenization technique is then used to upscale the pore-scale model under three different scenarios: slow, moderate and high reaction rates corresponding to three orders of magnitude of the Damköhler number. The results show that the macroscopic model obtained for a slow reaction rate predicts accurately the coupled diffusion-reaction process at the macroscale in the range of small Damköhler number. However, the classical homogenization procedure for moderate and high reaction rates fails to capture correctly the complex physics at short time when chemical equilibrium is not reached. In these cases, upscaled models impose strictly the chemical equilibrium at the first order due to the dominance of reaction over diffusion. Numerical simulations highlight the error of the macroscopic models compared to direct numerical simulations.
引用
收藏
页码:437 / 457
页数:20
相关论文
共 50 条
  • [31] Computational homogenization of uncoupled consolidation in micro-heterogeneous porous media
    Larsson, Fredrik
    Runesson, Kenneth
    Su, Fang
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2010, 34 (14) : 1431 - 1458
  • [32] Homogenization of two phase flow through randomly heterogeneous porous media
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 1996, 76 (Suppl 4):
  • [33] Homogenization of a convection-diffusion model with reaction in a porous medium
    Allaire, Gregoire
    Raphael, Anne-Lise
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (08) : 523 - 528
  • [34] Modeling of coupled THMC processes in porous media
    Kowalsky, Ursula
    Bente, Sonja
    Dinkler, Dieter
    COUPLED SYSTEMS MECHANICS, 2014, 3 (01): : 27 - 52
  • [35] Homogenization results for a coupled system of reaction-diffusion equations
    Cardone, G.
    Perugia, C.
    Timofte, C.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 236 - 264
  • [36] Transport processes in porous media: diffusion in zeolites
    Haberlandt, R
    THIN SOLID FILMS, 1998, 330 (01) : 34 - 45
  • [37] Solver-free classical computational homogenization for nonlinear periodic heterogeneous media
    Beel, Andrew
    Fish, Jacob
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (04)
  • [38] Computational homogenization of fully coupled multiphase flow in deformable porous media
    Khoei, A. R.
    Saeedmonir, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
  • [39] Effective medium equation for fractional Cattaneo's diffusion and heterogeneous reaction in disordered porous media
    Valdes-Parada, Francisco J.
    Ochoa-Tapia, Alberto
    Alvarez-Ramirez, Jose
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) : 318 - 328
  • [40] Upscaling diffusion-reaction in porous media
    Bourbatache, M. K.
    Millet, O.
    Moyne, C.
    ACTA MECHANICA, 2020, 231 (05) : 2011 - 2031