Factorization statistics of restricted polynomial specializations over large finite fields

被引:0
|
作者
Alexei Entin
机构
[1] Tel Aviv University,School of Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a polynomial F(t, A1, …, An) ∈ F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}$$\end{document}p[t, A1, …, An] (p being a prime number) we study the factorization statistics of its specializations F(t,a1,…,an)∈Fp[t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\left({t,{a_1}, \ldots ,{a_n}} \right) \in {\mathbb{F}_p}\left[t \right]$$\end{document} with (a1, …, an) ∈ S, where S⊂Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subset \mathbb{F}_p^n$$\end{document} is a subset, in the limit p → ∞ and deg F fixed. We show that for a sufficiently large and regular subset S⊂Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subset \mathbb{F}_p^n$$\end{document}, e.g., a product of n intervals of length H1, …, Hn with ∏i=1nHn>pn−1/2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod\nolimits_{i = 1}^n {{H_n} > {p^{n - 1/2 +\epsilon}}} $$\end{document}, the factorization statistics is the same as for unrestricted specializations (i.e., S=Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = \mathbb{F}_p^n$$\end{document}) up to a small error. This is a generalization of the well-known Pólya-Vinogradov estimate of the number of quadratic residues modulo p in an interval.
引用
收藏
页码:37 / 53
页数:16
相关论文
共 50 条
  • [1] FACTORIZATION STATISTICS OF RESTRICTED POLYNOMIAL SPECIALIZATIONS OVER LARGE FINITE FIELDS
    Entin, Alexei
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (01) : 37 - 53
  • [2] Arithmetic properties of polynomial specializations over finite fields
    Pollack, Paul
    [J]. ACTA ARITHMETICA, 2009, 136 (01) : 57 - 79
  • [3] Univariate polynomial factorization over finite fields with large extension degree
    van der Hoeven, Joris
    Lecerf, Gregoire
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024, 35 (02) : 121 - 149
  • [4] Univariate polynomial factorization over finite fields with large extension degree
    Joris van der Hoeven
    Grégoire Lecerf
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2024, 35 : 121 - 149
  • [5] Univariate polynomial factorization over finite fields
    Naudin, P
    Quitte, C
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 191 (1-2) : 1 - 36
  • [6] ON POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    GUNJI, H
    ARNON, D
    [J]. MATHEMATICS OF COMPUTATION, 1981, 36 (153) : 281 - 287
  • [7] ON BIVARIATE POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    SHPARLINSKI, IE
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 787 - 791
  • [8] The complete analysis of a polynomial factorization algorithm over finite fields
    Flajolet, P
    Gourdon, X
    [J]. JOURNAL OF ALGORITHMS, 2001, 40 (01) : 37 - 81
  • [9] TOWARD AN OPTIMAL QUANTUM ALGORITHM FOR POLYNOMIAL FACTORIZATION OVER FINITE FIELDS
    Doliskani, Javad
    [J]. QUANTUM INFORMATION & COMPUTATION, 2019, 19 (1-2) : 1 - 13
  • [10] Polynomial Factorization Over Henselian Fields
    Alberich-Carraminana, Maria
    Guardia, Jordi
    Nart, Enric
    Poteaux, Adrien
    Roe, Joaquim
    Weimann, Martin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,