Univariate polynomial factorization over finite fields with large extension degree

被引:0
|
作者
Joris van der Hoeven
Grégoire Lecerf
机构
[1] CNRS,
[2] École polytechnique,undefined
[3] Institut Polytechnique de Paris,undefined
[4] Laboratoire d’informatique de l’École polytechnique (LIX,undefined
[5] UMR 7161),undefined
关键词
Polynomial factorization; Finite field; Algorithm; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with d1.5+o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{1.5 + o (1)}$$\end{document} for input polynomials of degree d, and with the square of the bit size of the ground field. It relies on a variant of the Cantor–Zassenhaus algorithm which exploits fast modular composition. Using techniques by Kaltofen and Shoup, we prove a refinement of this bound when the finite field has a large extension degree over its prime field. We also present fast practical algorithms for the case when the extension degree is smooth.
引用
收藏
页码:121 / 149
页数:28
相关论文
共 50 条
  • [1] Univariate polynomial factorization over finite fields with large extension degree
    van der Hoeven, Joris
    Lecerf, Gregoire
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024, 35 (02) : 121 - 149
  • [2] Univariate polynomial factorization over finite fields
    Naudin, P
    Quitte, C
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 191 (1-2) : 1 - 36
  • [3] Factorization statistics of restricted polynomial specializations over large finite fields
    Alexei Entin
    [J]. Israel Journal of Mathematics, 2021, 242 : 37 - 53
  • [4] FACTORIZATION STATISTICS OF RESTRICTED POLYNOMIAL SPECIALIZATIONS OVER LARGE FINITE FIELDS
    Entin, Alexei
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (01) : 37 - 53
  • [5] ON POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    GUNJI, H
    ARNON, D
    [J]. MATHEMATICS OF COMPUTATION, 1981, 36 (153) : 281 - 287
  • [6] ON BIVARIATE POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    SHPARLINSKI, IE
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 787 - 791
  • [7] The complete analysis of a polynomial factorization algorithm over finite fields
    Flajolet, P
    Gourdon, X
    [J]. JOURNAL OF ALGORITHMS, 2001, 40 (01) : 37 - 81
  • [8] TOWARD AN OPTIMAL QUANTUM ALGORITHM FOR POLYNOMIAL FACTORIZATION OVER FINITE FIELDS
    Doliskani, Javad
    [J]. QUANTUM INFORMATION & COMPUTATION, 2019, 19 (1-2) : 1 - 13
  • [9] Polynomial Factorization Over Henselian Fields
    Alberich-Carraminana, Maria
    Guardia, Jordi
    Nart, Enric
    Poteaux, Adrien
    Roe, Joaquim
    Weimann, Martin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,
  • [10] Equal-degree factorization of binomials and trinomials over finite fields
    Manjit Singh
    [J]. Journal of Applied Mathematics and Computing, 2024, 70 : 1647 - 1672