Factorization statistics of restricted polynomial specializations over large finite fields

被引:0
|
作者
Alexei Entin
机构
[1] Tel Aviv University,School of Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a polynomial F(t, A1, …, An) ∈ F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}$$\end{document}p[t, A1, …, An] (p being a prime number) we study the factorization statistics of its specializations F(t,a1,…,an)∈Fp[t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\left({t,{a_1}, \ldots ,{a_n}} \right) \in {\mathbb{F}_p}\left[t \right]$$\end{document} with (a1, …, an) ∈ S, where S⊂Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subset \mathbb{F}_p^n$$\end{document} is a subset, in the limit p → ∞ and deg F fixed. We show that for a sufficiently large and regular subset S⊂Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subset \mathbb{F}_p^n$$\end{document}, e.g., a product of n intervals of length H1, …, Hn with ∏i=1nHn>pn−1/2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod\nolimits_{i = 1}^n {{H_n} > {p^{n - 1/2 +\epsilon}}} $$\end{document}, the factorization statistics is the same as for unrestricted specializations (i.e., S=Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = \mathbb{F}_p^n$$\end{document}) up to a small error. This is a generalization of the well-known Pólya-Vinogradov estimate of the number of quadratic residues modulo p in an interval.
引用
收藏
页码:37 / 53
页数:16
相关论文
共 50 条
  • [21] ARITHMETIC SPECIALIZATIONS IN THE FIELDS OF POLYNOMIAL REDUCIBILITY
    SPRINZHUK, VG
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1986, 30 (07): : 581 - 584
  • [22] Efficient multivariate factorization over finite fields
    Bernardin, L
    Monagan, MB
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 15 - 28
  • [23] Factorization of Dickson polynomials over finite fields
    Arevalo Baquero, Nelcy Esperanza
    Brochero Martinez, Fabio Enrique
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1050 - 1062
  • [24] Factorization of Dickson polynomials over finite fields
    Nelcy Esperanza Arévalo Baquero
    Fabio Enrique Brochero Martinez
    [J]. São Paulo Journal of Mathematical Sciences, 2022, 16 : 1050 - 1062
  • [25] Factorization of a class of polynomials over finite fields
    Stichtenoth, Henning
    Topuzoglu, Alev
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (01) : 108 - 122
  • [26] Factorization of composite polynomials over finite fields
    Mehrabi, Saeid
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (05) : 874 - 883
  • [27] Unimodular polynomial matrices over finite fields
    Arora, Akansha
    Ram, Samrith
    Venkateswarlu, Ayineedi
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) : 1299 - 1312
  • [28] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    [J]. RAMANUJAN JOURNAL, 2018, 46 (03): : 863 - 898
  • [29] Polynomial equations for matrices over finite fields
    Hua, JZ
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 59 - 64
  • [30] Dynamics of polynomial maps over finite fields
    José Alves Oliveira
    F. E. Brochero Martínez
    [J]. Designs, Codes and Cryptography, 2024, 92 : 1113 - 1125