Convex Mappings Associated with the Roper-Suffridge Extension Operator

被引:0
|
作者
Danli Zhang
Huiming Xu
Jianfei Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Huaqiao University,School of Mathematical Sciences
来源
Acta Mathematica Scientia | 2019年 / 39卷
关键词
Roper-Suffridge operator; convex mapping; hyperbolic metric; 32H02; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
Let λG(z)∣dz∣ be the hyperbolic metric on a simply connected proper domain G ⊂ ℂ containing the origin, and let ∥ · ∥j be the Banach norms of ℂnj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^{{n_j}}}$$\end{document} for j = 1, 2, ⋯, k. This note is to prove that if f is a normalized biholomorphic convex function on G, then
引用
收藏
页码:1619 / 1627
页数:8
相关论文
共 50 条