Roper-Suffridge extension operator and the lower bound for the distortion

被引:5
|
作者
Hamada, H
Kohr, G
机构
[1] Kyushu Sangyo Univ, Fac Engn, Higashi Ku, Fukuoka 8138503, Japan
[2] Univ Babes Bolyai, Fac Math & Comp Sci, R-3400 Cluj Napoca, Romania
基金
日本学术振兴会;
关键词
convex mapping; distortion; linear invariant family; Roper-Suffridge extension operator;
D O I
10.1016/j.jmaa.2004.06.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Liczberski-Starkov gave a sharp lower bound for parallel toDphi(n)(f)(z)parallel to near the origin, where phi(n) is the Roper-Suffridge extension operator and f is a normalized convex mapping on the unit disk in C. They gave a conjecture that the sharp lower bound holds on the Euclidean unit ball B-n in C-n. In this paper, we will give a sharp lower bound on B-n for a more general extension operator and for normalized univalent mappings f or normalized convex mappings f. We will give a lower bound for mappings f in a linear invariant family. We will also give a similar sharp lower bound on bounded convex complete Reinhardt domains in C-n. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 463
页数:10
相关论文
共 50 条
  • [1] On the roper-suffridge extension operator
    Sheng Gong
    Taishun Liu
    [J]. Journal d’Analyse Mathématique, 2002, 88 : 397 - 404
  • [2] On the Roper-Suffridge extension operator
    Gong, S
    Liu, TS
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1): : 397 - 404
  • [3] The generalized Roper-Suffridge extension operator
    Gong, S
    Liu, TS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 284 (02) : 425 - 434
  • [4] THE GENERALIZED ROPER-SUFFRIDGE EXTENSION OPERATOR
    冯淑霞
    刘太顺
    [J]. Acta Mathematica Scientia, 2008, (01) : 63 - 80
  • [5] A Modification of the Roper-Suffridge Extension Operator
    Jerry R. Muir
    [J]. Computational Methods and Function Theory, 2005, 5 (1) : 237 - 251
  • [6] The generalized Roper-Suffridge extension operator
    Feng Shuxia
    Liu Taishun
    [J]. ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 63 - 80
  • [7] ROPER-SUFFRIDGE EXTENSION OPERATOR ON A REINHARDT DOMAIN
    李鸿军
    冯淑霞
    [J]. Acta Mathematica Scientia, 2014, 34 (06) : 1761 - 1774
  • [8] Loewner chains and the Roper-Suffridge extension operator
    Graham, I
    Kohr, G
    Kohr, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (02) : 448 - 465
  • [9] ROPER-SUFFRIDGE EXTENSION OPERATOR ON A REINHARDT DOMAIN
    Li, Hongjun
    Feng, Shuxia
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) : 1761 - 1774
  • [10] Convex Mappings Associated with the Roper-Suffridge Extension Operator
    Danli Zhang
    Huiming Xu
    Jianfei Wang
    [J]. Acta Mathematica Scientia, 2019, 39 : 1619 - 1627