Convex Mappings Associated with the Roper-Suffridge Extension Operator

被引:0
|
作者
Danli Zhang
Huiming Xu
Jianfei Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Huaqiao University,School of Mathematical Sciences
来源
Acta Mathematica Scientia | 2019年 / 39卷
关键词
Roper-Suffridge operator; convex mapping; hyperbolic metric; 32H02; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
Let λG(z)∣dz∣ be the hyperbolic metric on a simply connected proper domain G ⊂ ℂ containing the origin, and let ∥ · ∥j be the Banach norms of ℂnj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^{{n_j}}}$$\end{document} for j = 1, 2, ⋯, k. This note is to prove that if f is a normalized biholomorphic convex function on G, then
引用
收藏
页码:1619 / 1627
页数:8
相关论文
共 50 条
  • [1] Convex Mappings Associated with the Roper-Suffridge Extension Operator
    Zhang, Danli
    Xu, Huiming
    Wang, Jianfei
    [J]. ACTA MATHEMATICA SCIENTIA, 2019, 39 (06) : 1619 - 1627
  • [2] CONVEX MAPPINGS ASSOCIATED WITH THE ROPER-SUFFRIDGE EXTENSION OPERATOR
    张丹莉
    徐辉明
    王建飞
    [J]. Acta Mathematica Scientia, 2019, 39 (06) : 1619 - 1627
  • [3] Univalent mappings associated with the Roper-Suffridge extension operator
    Ian Graham
    Gabriela Kohr
    [J]. Journal d’Analyse Mathématique, 2000, 81 : 331 - 342
  • [4] Univalent mappings associated with the Roper-Suffridge extension operator
    Graham, I
    Kohr, G
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2000, 81 (1): : 331 - 342
  • [5] The Roper-Suffridge extension operator and classes of biholomorphic mappings
    Ian Graham
    Gabriela Kohr
    [J]. Science in China Series A: Mathematics, 2006, 49 : 1539 - 1552
  • [6] The Roper-Suffridge extension operator and classes of biholomorphic mappings
    Graham, Ian
    Kohr, Gabriela
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (11): : 1539 - 1552
  • [7] On the roper-suffridge extension operator
    Sheng Gong
    Taishun Liu
    [J]. Journal d’Analyse Mathématique, 2002, 88 : 397 - 404
  • [8] On the Roper-Suffridge extension operator
    Gong, S
    Liu, TS
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1): : 397 - 404
  • [9] THE ROPER-SUFFRIDGE EXTENSION OPERATOR AND ITS APPLICATIONS TO CONVEX MAPPINGS IN C2
    Wang, Jianfei
    Liu, Taishun
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) : 7743 - 7759