A new mathematical model for complex neural networks of the partly diffusive Hindmasrh-Rose equations with boundary coupling is proposed. Through analysis of absorbing dynamics for the solution semiflow, the asymptotic synchronization of the complex neuronal networks at a uniform exponential rate is proved under the condition that stimulation signal strength of the ensemble boundary coupling exceeds a quantitative threshold expressed by the biological parameters.
机构:
Fudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R ChinaFudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R China
Zuo, Zhihao
Cao, Ruizhi
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R ChinaFudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R China
Cao, Ruizhi
Gan, Zhongxue
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R ChinaFudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R China
Gan, Zhongxue
Hou, Jiawen
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Res Inst Intelligent & Complex Syst, Shanghai, Peoples R ChinaFudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R China
Hou, Jiawen
Guan, Chun
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R ChinaFudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R China
Guan, Chun
Leng, Siyang
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R China
Fudan Univ, Res Inst Intelligent & Complex Syst, Shanghai, Peoples R ChinaFudan Univ, Inst AI & Robot, Acad Engn & Technol, Shanghai, Peoples R China