How single node dynamics enhances synchronization in neural networks with electrical coupling

被引:4
|
作者
Bonacini, E. [1 ]
Burioni, R. [2 ,3 ]
di Volo, M. [4 ,7 ,8 ]
Groppi, M. [1 ]
Soresina, C. [5 ]
Vezzani, A. [2 ,6 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
[2] Univ Parma, Dipartimento Fis & Sci Terra, Viale GP Usberti 7-A, I-43124 Parma, Italy
[3] Ist Nazl Fis Nucl, Grp Collegato Parma, Parco Area Sci 7-A, I-43124 Parma, Italy
[4] Univ Florence, Ctr Interdipartimentale Studio Dinam Complesse, Via Sansone 1, I-50019 Florence, Italy
[5] Univ Milan, Dipartimento Matemat F Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
[6] CNR Ist Nanosci, S3, Via Campi 213-A, I-41125 Modena, Italy
[7] Ecole Normale Super, Grp Neural Theory, Dept Etud Cognit, 24 Rue Lhomond, F-75231 Paris, France
[8] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
关键词
Synchronization; Master Stability Function; Connection Graph Stability; Neural network; NEURONAL NETWORKS; MODEL;
D O I
10.1016/j.chaos.2016.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stability of the completely synchronous state in neural networks with electrical coupling is analytically investigated applying both the Master Stability Function approach (MSF), developed by Pecora and Carroll (1998), and the Connection Graph Stability method (CGS) proposed by Belykh et al. (2004). The local dynamics is described by Morris-Lecar model for spiking neurons and by Hindmarsh-Rose model in spike, burst, irregular spike and irregular burst regimes. The combined application of both CGS and MSF methods provides an efficient estimate of the synchronization thresholds, namely bounds for the coupling strength ranges in which the synchronous state is stable. In all the considered cases, we observe that high values of coupling strength tend to synchronize the system. Furthermore, we observe a correlation between the single node attractor and the local stability properties given by MSF. The analytical results are compared with numerical simulations on a sample network, with excellent agreement. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 50 条
  • [1] Dynamics and synchronization of complex neural networks with boundary coupling
    Phan, Chi
    Skrzypek, Leslaw
    You, Yuncheng
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [2] Dynamics and synchronization of complex neural networks with boundary coupling
    Chi Phan
    Leslaw Skrzypek
    Yuncheng You
    [J]. Analysis and Mathematical Physics, 2022, 12
  • [3] Delay coupling enhances synchronization in complex networks
    Shrii, M. Manju
    Senthilkumar, D. V.
    Kurths, J.
    [J]. EPL, 2012, 98 (01)
  • [4] Outer synchronization of networks with different node dynamics
    Ray, A.
    Roychowdhury, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (08): : 1509 - 1518
  • [5] Outer synchronization of networks with different node dynamics
    A. Ray
    A. Roychowdhury
    [J]. The European Physical Journal Special Topics, 2014, 223 : 1509 - 1518
  • [6] Sparse repulsive coupling enhances synchronization in complex networks
    Leyva, I.
    Sendina-Nadal, I.
    Almendral, J. A.
    Sanjuan, M. A. F.
    [J]. PHYSICAL REVIEW E, 2006, 74 (05):
  • [7] Synchronization of Markovian Coupled Neural Networks with Nonidentical Node-Delays and Random Coupling Strengths
    Yang, Xinsong
    Cao, Jinde
    Lu, Jianquan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (01) : 60 - 71
  • [8] Coupling parameter in synchronization of diluted neural networks
    Li, Q
    Chen, Y
    Wang, YH
    [J]. PHYSICAL REVIEW E, 2002, 65 (04): : 4
  • [9] Feedback coupling induced synchronization of neural networks
    Zuo, Zhihao
    Cao, Ruizhi
    Gan, Zhongxue
    Hou, Jiawen
    Guan, Chun
    Leng, Siyang
    [J]. NEUROCOMPUTING, 2023, 549
  • [10] Synchronization of Intermittently Coupled Neural Networks With Coupling Delay
    Zhu, Shuaibing
    Sang, Hong
    Zhang, Kai
    Kong, Fanchao
    Lu, Jinhu
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,