Multivariable coupling and synchronization in complex networks

被引:26
|
作者
Nazarimehr, Fahimeh [1 ]
Panahi, Shirin [1 ]
Jalili, Mahdi [2 ]
Perc, Matjaz [3 ,4 ,5 ]
Jafari, Sajad [1 ]
Fercec, Brigita [4 ,6 ]
机构
[1] Amirkabir Univ Technol, Biomed Engn Dept, Tehran 158754413, Iran
[2] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
[3] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, SLO-2000 Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Mladinska 3, SLO-2000 Maribor, Slovenia
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Univ Maribor, Fac Energy Technol, Hocevarjev Trg 1, Krshko 8270, Slovenia
关键词
Multivariable coupling; Synchronization; Complex network; Chaos; Nonlinear dynamics; CHAOTIC SYSTEM; MOTION;
D O I
10.1016/j.amc.2019.124996
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronization in complex networks is an evergreen subject with numerous applications in biological, social, and technological systems. We here study whether a transition from a single variable to multivariable coupling facilitates the emergence of synchronization in a network of circulant oscillators. We show that the network indeed has much better synchronizability when individual dynamical units are coupled through multiple variables rather than through just one. In particular, we consider in detail four different coupling scenarios for a simple three-dimensional chaotic circulant system, and we determine the smallest coupling strength needed for complete synchronization. We find that the smallest coupling strength is needed when the coupling is through all three variables, and that for the same level of synchronization through a single variable a much stronger coupling strength is needed. Our results thus show that multivariable coupling provides a significantly more efficient synchronization profile in complex networks. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Synchronization in complex networks with adaptive coupling
    Zhang, Rong
    Hu, Manfeng
    Xu, Zhenyuan
    [J]. PHYSICS LETTERS A, 2007, 368 (3-4) : 276 - 280
  • [2] Global Synchronization in Complex Networks with Adaptive Coupling
    Yuan, Zhengzhong
    Cai, Jianping
    Lin, Meili
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [3] Delay coupling enhances synchronization in complex networks
    Shrii, M. Manju
    Senthilkumar, D. V.
    Kurths, J.
    [J]. EPL, 2012, 98 (01)
  • [4] Synchronization of complex dynamical networks with hybrid coupling
    Qin, Buzhi
    Wang, Ying
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (09):
  • [5] Synchronization in complex dynamical networks with nonsymmetric coupling
    Wu, Jianshe
    Jiao, Licheng
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (19) : 2487 - 2498
  • [6] SYNCHRONIZATION OF COMPLEX-VARIABLE DYNAMICAL NETWORKS WITH COMPLEX COUPLING
    Wu, Zhaoyan
    Fu, Xinchu
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (02):
  • [7] Synchronization of complex dynamical networks with discontinuous coupling signals
    Park, Ju H.
    Lee, Tae H.
    [J]. NONLINEAR DYNAMICS, 2015, 79 (02) : 1353 - 1362
  • [8] Synchronization in Complex Networks With Stochastically Switching Coupling Structures
    Liu, Bo
    Lu, Wenlian
    Chen, Tianping
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (03) : 754 - 760
  • [9] Synchronization of complex dynamical networks with discontinuous coupling signals
    Ju H. Park
    Tae H. Lee
    [J]. Nonlinear Dynamics, 2015, 79 : 1353 - 1362
  • [10] Lag synchronization of complex dynamical networks with noise coupling
    Shi Hongjun
    Li Wang
    Miao Lianying
    Sun Yongzheng
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1256 - 1261