A quiver mutation loop is a sequence of mutations and vertex
relabelings, along which a quiver transforms back to the original
form. For a given mutation loop γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma$$\end{document}, we introduce a quantity called a partition q-seriesZ(γ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${Z(\gamma)}$$\end{document} which takes values in N[[q1/Δ]]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{N}[[q^{1/ \Delta}]]}$$\end{document} where Δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta$$\end{document} is some positive integer. The
partition q-series are invariant under pentagon moves. If the
quivers are of Dynkin type or square products thereof, they
reproduce so-called fermionic or quasi-particle character formulas
of certain modules associated with affine Lie algebras. They enjoy
nice modular properties as expected from the conformal field theory
point of view.
机构:
Zhoukou Normal Univ, Sch Math & Stat, Zhoukou, Peoples R China
Univ Salento, Dept Math & Phys, Lecce, ItalyZhoukou Normal Univ, Sch Math & Stat, Zhoukou, Peoples R China