Quiver Mutation Loops and Partition q-Series

被引:0
|
作者
Akishi Kato
Yuji Terashima
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
[2] Tokyo Institute of Technology,Graduate School of Information Science and Engineering
来源
关键词
Modular Form; Dynkin Diagram; Cluster Algebra; Congruence Subgroup; Mutation Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
A quiver mutation loop is a sequence of mutations and vertex relabelings, along which a quiver transforms back to the original form. For a given mutation loop γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, we introduce a quantity called a partition q-seriesZ(γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z(\gamma)}$$\end{document} which takes values in N[[q1/Δ]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{N}[[q^{1/ \Delta}]]}$$\end{document} where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document} is some positive integer. The partition q-series are invariant under pentagon moves. If the quivers are of Dynkin type or square products thereof, they reproduce so-called fermionic or quasi-particle character formulas of certain modules associated with affine Lie algebras. They enjoy nice modular properties as expected from the conformal field theory point of view.
引用
收藏
页码:811 / 830
页数:19
相关论文
共 50 条
  • [21] On q-series and continued fractions
    Mishra, Vishnu Narayan
    Singh, S. N.
    Singh, S. P.
    Yadav, Vijay
    COGENT MATHEMATICS, 2016, 3
  • [22] On the uniform convergence of a q-series
    Agratini, Octavian
    Gupta, Vijay
    CARPATHIAN JOURNAL OF MATHEMATICS, 2016, 32 (02) : 141 - 146
  • [23] Dissections of Strange q-Series
    Ahlgren, Scott
    Kim, Byungchan
    Lovejoy, Jeremy
    ANNALS OF COMBINATORICS, 2019, 23 (3-4) : 427 - 442
  • [24] On some transformations of q-series
    Zhang, Zhizheng
    Hu, Qiuxia
    UTILITAS MATHEMATICA, 2008, 77 : 277 - 285
  • [25] Certain q-series identities
    Praveen Agarwal
    Shilpi Jain
    Junesang Choi
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 139 - 146
  • [26] Dissections of Strange q-Series
    Scott Ahlgren
    Byungchan Kim
    Jeremy Lovejoy
    Annals of Combinatorics, 2019, 23 : 427 - 442
  • [27] PRETZEL KNOTS AND q-SERIES
    Elhamdadi, Mohamed
    Hajij, Mustafa
    OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (02) : 363 - 381
  • [28] Knots and Their Related q-Series
    Garoufalidis, Stavros
    Zagier, Don
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [29] A variation of the Andrews-Stanley partition function and two interesting q-series identities
    Lin, Bernard L. S.
    Peng, Lin
    Toh, Pee Choon
    RAMANUJAN JOURNAL, 2021, 56 (01): : 297 - 307
  • [30] On a symmetric q-series identity
    Patkowski, Alexander E.
    DISCRETE MATHEMATICS, 2016, 339 (12) : 2994 - 2997