Quiver Mutation Loops and Partition q-Series

被引:0
|
作者
Akishi Kato
Yuji Terashima
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
[2] Tokyo Institute of Technology,Graduate School of Information Science and Engineering
来源
关键词
Modular Form; Dynkin Diagram; Cluster Algebra; Congruence Subgroup; Mutation Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
A quiver mutation loop is a sequence of mutations and vertex relabelings, along which a quiver transforms back to the original form. For a given mutation loop γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, we introduce a quantity called a partition q-seriesZ(γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z(\gamma)}$$\end{document} which takes values in N[[q1/Δ]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{N}[[q^{1/ \Delta}]]}$$\end{document} where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document} is some positive integer. The partition q-series are invariant under pentagon moves. If the quivers are of Dynkin type or square products thereof, they reproduce so-called fermionic or quasi-particle character formulas of certain modules associated with affine Lie algebras. They enjoy nice modular properties as expected from the conformal field theory point of view.
引用
收藏
页码:811 / 830
页数:19
相关论文
共 50 条
  • [1] Quiver Mutation Loops and Partition q-Series
    Kato, Akishi
    Terashima, Yuji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (02) : 811 - 830
  • [2] Quantum Dilogarithms and Partition q-Series
    Kato, Akishi
    Terashima, Yuji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) : 457 - 481
  • [3] Quantum Dilogarithms and Partition q-Series
    Akishi Kato
    Yuji Terashima
    Communications in Mathematical Physics, 2015, 338 : 457 - 481
  • [4] A q-Series Bernoulli-Euler Partition Formula
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2008, 14 (01) : 6 - 9
  • [5] qFunctions - A Mathematica package for q-series and partition theory applications
    Ablinger, Jakob
    Uncu, Ali Kemal
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 107 : 145 - 166
  • [6] Partition implications of a three-parameter q-series identity
    Dixit, Atul
    Maji, Bibekananda
    RAMANUJAN JOURNAL, 2020, 52 (02): : 323 - 358
  • [7] Partition implications of a three-parameter q-series identity
    Atul Dixit
    Bibekananda Maji
    The Ramanujan Journal, 2020, 52 : 323 - 358
  • [9] A new four parameter q-series identity and its partition implications
    Krishnaswami Alladi
    George E. Andrews
    Alexander Berkovich
    Inventiones mathematicae, 2003, 153 : 231 - 260
  • [10] A new four parameter q-series identity and its partition implications
    Alladi, K
    Andrews, GE
    Berkovich, A
    INVENTIONES MATHEMATICAE, 2003, 153 (02) : 231 - 260